Your browser doesn't support javascript.
loading
Porous alginate hydrogel functionalized with virus as three-dimensional scaffolds for bone differentiation.
Luckanagul, Jittima; Lee, L Andrew; Nguyen, Quyen L; Sitasuwan, Pongkwan; Yang, Xiaoming; Shazly, Tarek; Wang, Qian.
Affiliation
  • Luckanagul J; Department of Chemistry and Biochemistry, University of South Carolina, Medical Chronobiology Laboratory and Center for Colon Cancer Research, WJB Dorn VA Medical Center, South Carolina, United States.
Biomacromolecules ; 13(12): 3949-58, 2012 Dec 10.
Article in En | MEDLINE | ID: mdl-23148483
ABSTRACT
In regenerative medicine, a synthetic extracellular matrix is crucial for supporting stem cells during its differentiation process to integrate into surrounding tissues. Hydrogels are used extensively in biomaterials as synthetic matrices to support the cells. However, to mimic the biological niche of a functional tissue, various chemical functionalities are necessary. We present here, a method of functionalizing a highly porous hydrogel with functional groups by mixing the hydrogel with a plant virus, tobacco mosaic virus (TMV), and its mutant. The implication of this process resides with the three important features of TMV its well-defined genetic/chemical modularity, its multivalency (TMV capsid is composed of 2130 copies of identical subunits), and its well-defined structural features. Previous studies utilizing the native TMV on two-dimensional supports accelerated mesenchymal stem cell differentiation, and surfaces modified with genetically modified viral particles further enhanced cell attachment and differentiation. Herein we demonstrate that functionalization of a porous alginate scaffold can be achieved by the addition of viral particles with minimal processing and downstream purifications, and the cell attachment and differentiation within the macroporous scaffold can be effectively manipulated by altering the peptide or small molecule displayed on the viral particles.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cell Differentiation / Hydrogels / Alginates / Tissue Scaffolds Limits: Animals Language: En Journal: Biomacromolecules Journal subject: BIOLOGIA MOLECULAR Year: 2012 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cell Differentiation / Hydrogels / Alginates / Tissue Scaffolds Limits: Animals Language: En Journal: Biomacromolecules Journal subject: BIOLOGIA MOLECULAR Year: 2012 Document type: Article Affiliation country: United States
...