Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran.
Int J Biometeorol
; 58(3): 395-405, 2014 Apr.
Article
in En
| MEDLINE
| ID: mdl-23397072
Wheat is the main food for the majority of Iran's population. Precise estimation of wheat yield change in future is essential for any possible revision of management strategies. The main objective of this study was to evaluate the effects of climate change, CO2 concentration, technology development and their integrated effects on wheat production under future climate change. This study was performed under two scenarios of the IPCC Special Report on Emission Scenarios (SRES): regional economic (A2) and global environmental (B1). Crop production was projected for three future time periods (2020, 2050 and 2080) in comparison with a baseline year (2005) for Khorasan province located in the northeast of Iran. Four study locations in the study area included Mashhad, Birjand, Bojnourd and Sabzevar. The effect of technology development was calculated by fitting a regression equation between the observed wheat yields against historical years considering yield potential increase and yield gap reduction as technology development. Yield relative increase per unit change of CO2 concentration (1 ppm(-1)) was considered 0.05 % and was used to implement the effect of elevated CO2. The HadCM3 general circulation model along with the CSM-CERES-Wheat crop model were used to project climate change effects on wheat crop yield. Our results illustrate that, among all the factors considered, technology development provided the highest impact on wheat yield change. Highest wheat yield increase across all locations and time periods was obtained under the A2 scenario. Among study locations, Mashhad showed the highest change in wheat yield. Yield change compared to baseline ranged from -28 % to 56 % when the integration of all factors was considered across all locations. It seems that achieving higher yield of wheat in future may be expected in northeast Iran assuming stable improvements in production technology.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Atmosphere
/
Technology
/
Triticum
/
Climate Change
/
Carbon Dioxide
/
Models, Statistical
/
Environment
Type of study:
Prognostic_studies
/
Risk_factors_studies
Country/Region as subject:
Asia
Language:
En
Journal:
Int J Biometeorol
Year:
2014
Document type:
Article
Country of publication:
United States