Your browser doesn't support javascript.
loading
Effects of freezing/thawing on the mechanical properties of decellularized lungs.
Nonaka, Paula N; Campillo, Noelia; Uriarte, Juan J; Garreta, Elena; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon.
Affiliation
  • Nonaka PN; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Spain; Master's and Doctoral Degree Programs in Rehabilitation Sciences, Nove de Julho University, Sao Paulo, Brazil.
J Biomed Mater Res A ; 102(2): 413-9, 2014 Feb.
Article in En | MEDLINE | ID: mdl-23533110
ABSTRACT
Lung bioengineering based on decellularized organ scaffolds is a potential alternative for transplantation. Freezing/thawing, a usual procedure in organ decellularization and storage could modify the mechanical properties of the lung scaffold and reduce the performance of the bioengineered lung when subjected to the physiological inflation-deflation breathing cycles. The aim of this study was to determine the effects of repeated freezing/thawing on the mechanical properties of decellularized lungs in the physiological pressure-volume regime associated with normal ventilation. Fifteen mice lungs (C57BL/6) were decellularized using a conventional protocol not involving organ freezing and based on sodium dodecyl sulfate detergent. Subsequently, the mechanical properties of the acellular lungs were measured before and after subjecting them to three consecutive cycles of freezing/thawing. The resistance (RL ) and elastance (EL ) of the decellularized lungs were computed by linear regression fitting of the recorded signals (tracheal pressure, flow, and volume) during mechanical ventilation. RL was not significantly modified by freezing-thawing from 0.88 ± 0.37 to 0.90 ± 0.38 cmH2 O·s·mL(-1) (mean ± SE). EL slightly increased from 64.4 ± 11.1 to 73.0 ± 16.3 cmH2 O·mL(-1) after the three freeze-thaw cycles (p = 0.0013). In conclusion, the freezing/thawing process that is commonly used for both organ decellularization and storage induces only minor changes in the ventilation mechanical properties of the organ scaffold.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sodium Dodecyl Sulfate / Tissue Scaffolds / Freezing / Lung Limits: Animals Language: En Journal: J Biomed Mater Res A Journal subject: ENGENHARIA BIOMEDICA Year: 2014 Document type: Article Affiliation country: Brazil

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sodium Dodecyl Sulfate / Tissue Scaffolds / Freezing / Lung Limits: Animals Language: En Journal: J Biomed Mater Res A Journal subject: ENGENHARIA BIOMEDICA Year: 2014 Document type: Article Affiliation country: Brazil