1,2-naphthoquinone stimulates lipid peroxidation and cholesterol domain formation in model membranes.
Invest Ophthalmol Vis Sci
; 54(12): 7189-97, 2013 Nov 01.
Article
in En
| MEDLINE
| ID: mdl-24130176
PURPOSE: Naphthalene induces cataract formation through the accumulation of its reactive metabolite, 1,2-naphthoquinone (1,2-NQ), in the ocular lens. 1,2-NQ increases lens protein oxidation and disrupts fiber cell membrane function; however, the association of these effects with changes in membrane structure is not understood. The goal of this study was to determine the direct effects of 1,2-NQ on membrane lipid oxidation and structural organization. METHODS: Iodometric approaches were used to measure the effects of naphthalene and 1,2-NQ on lipid hydroperoxide (LOOH) formation in model membranes composed of cholesterol and dilinoleoylphosphatidylcholine. Membrane samples were prepared at various cholesterol-to-phospholipid mole ratios and subjected to autoxidation at 37°C for 48 hours in the absence or presence of either agent alone (0.1-5.0 µM) or in combination with vitamin E. Small-angle x-ray diffraction was used to measure the effects of naphthalene and 1,2-NQ on membrane structure before and after exposure to oxidative stress. RESULTS: 1,2-NQ increased LOOH formation by 250% (P < 0.001) and 350% (P < 0.001) at 1.0 and 5.0 µM, respectively, whereas naphthalene decreased LOOH levels by 25% (P < 0.01) and 10% (NS). The pro-oxidant effect of 1,2-NQ was inversely affected by membrane cholesterol enrichment and completely blocked by vitamin E. 1,2-NQ also increased cholesterol domain formation by 360% in membranes exposed to oxidative stress; however, no significant changes in membrane lipid organization were observed with naphthalene under the same conditions. CONCLUSIONS: These data suggest a novel mechanism for naphthalene-induced cataract, facilitated by the direct effects of 1,2-NQ on lipid peroxidation and cholesterol domain formation.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Lipid Peroxidation
/
Cholesterol
/
Naphthoquinones
/
Membrane Lipids
Limits:
Humans
Language:
En
Journal:
Invest Ophthalmol Vis Sci
Year:
2013
Document type:
Article
Country of publication:
United States