Your browser doesn't support javascript.
loading
Assessing carbon-encapsulated iron nanoparticles cytotoxicity in Lewis lung carcinoma cells.
Grudzinski, Ireneusz P; Bystrzejewski, Michal; Cywinska, Monika A; Kosmider, Anita; Poplawska, Magdalena; Cieszanowski, Andrzej; Fijalek, Zbigniew; Ostrowska, Agnieszka; Parzonko, Andrzej.
Affiliation
  • Grudzinski IP; Department of Toxicology, Faculty of Pharmacy, Medical University of Warsaw, ul. S. Banacha 1, 02-097, Warsaw, Poland.
J Appl Toxicol ; 34(4): 380-94, 2014 Apr.
Article in En | MEDLINE | ID: mdl-24474239
Carbon-encapsulated iron nanoparticles (CEINs) have been considered as attractive candidates for several biomedical applications. In the present study, we synthesized CEINs (the mean diameter 40-80 nm) using a carbon arc route, and the as-synthesized CEINs were characterized (scanning and transmission electron microscopy, dynamic light scattering, turbidimetry, Zeta potential) and further tested as raw and purified nanomaterials containing the carbon surface modified with acidic groups. For cytotoxicity evaluation, we applied a battery of different methods (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, calcein AM/propidium iodide, annexin V/propidium iodide, JC-1, cell cycle assay, Zeta potential, TEM and inductively coupled plasma mass spectrometry) to address the strategic cytotoxic endpoints of Lewis lung carcinoma cells due to CEIN (0.0001-100 µg ml(-1) ) exposures in vitro. Our studies evidence that incubation of Lewis lung carcinoma cells with CEINs is accompanied in substantial changes of zeta potential in cells and these effects may result in different internalization profiles. The results show that CEINs increased the mitochondrial and cell membrane cytotoxicity; however, the raw CEIN material (Fe@C/Fe) produced higher toxicities than the rest of the CEINs studied to data. The study showed that non-modified CEINs (Fe@C/Fe and Fe@C) elevated some pro-apoptotic events to a greater extent compared to that of the surface-modified CEINs (Fe@C-COOH and Fe@C-(CH2 )2 COOH). They also diminished the mitochondrial membrane potentials. In contrast to non-modified CEINs, the surface-functionalized nanoparticles caused the concentration- and time-dependent arrest of the S phase in cells. Taken all together, our results shed new light on the rational design of CEINs, as their geometry, hydrodynamic and, in particular, surface characteristics are important features in selecting CEINs as future nanomaterials for nanomedicine applications.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carbon / Apoptosis / Metal Nanoparticles / Iron Limits: Animals Language: En Journal: J Appl Toxicol Year: 2014 Document type: Article Affiliation country: Poland Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carbon / Apoptosis / Metal Nanoparticles / Iron Limits: Animals Language: En Journal: J Appl Toxicol Year: 2014 Document type: Article Affiliation country: Poland Country of publication: United kingdom