Your browser doesn't support javascript.
loading
New fission fragment distributions and r-process origin of the rare-earth elements.
Goriely, S; Sida, J-L; Lemaître, J-F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H-T.
Affiliation
  • Goriely S; Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium.
  • Sida JL; C.E.A. Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France.
  • Lemaître JF; C.E.A. Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France.
  • Panebianco S; C.E.A. Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France.
  • Dubray N; CEA, DAM, DIF, F-91297 Arpajon, France.
  • Hilaire S; CEA, DAM, DIF, F-91297 Arpajon, France.
  • Bauswein A; Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece and Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany.
  • Janka HT; Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany.
Phys Rev Lett ; 111(24): 242502, 2013 Dec 13.
Article in En | MEDLINE | ID: mdl-24483647
ABSTRACT
Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140.
Search on Google
Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Phys Rev Lett Year: 2013 Document type: Article Affiliation country: Belgium
Search on Google
Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Phys Rev Lett Year: 2013 Document type: Article Affiliation country: Belgium