Tuned critical avalanche scaling in bulk metallic glasses.
Sci Rep
; 4: 4382, 2014 Mar 17.
Article
in En
| MEDLINE
| ID: mdl-24632786
Ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Type of study:
Prognostic_studies
Language:
En
Journal:
Sci Rep
Year:
2014
Document type:
Article
Country of publication:
United kingdom