Your browser doesn't support javascript.
loading
PCB-153 shows different dynamics of mobilisation from differentiated rat adipocytes during lipolysis in comparison with PCB-28 and PCB-118.
Louis, Caroline; Tinant, Gilles; Mignolet, Eric; Thomé, Jean-Pierre; Debier, Cathy.
Affiliation
  • Louis C; Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
  • Tinant G; Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
  • Mignolet E; Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
  • Thomé JP; Laboratoire d'Ecologie animale et d'Ecotoxicologie, Université de Liège, Liège, Belgium.
  • Debier C; Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
PLoS One ; 9(9): e106495, 2014.
Article in En | MEDLINE | ID: mdl-25211159
ABSTRACT

BACKGROUND:

Polychlorinated biphenyls (PCBs) are persistent organic pollutants. Due to their lipophilic character, they are preferentially stored within the adipose tissue. During the mobilisation of lipids, PCBs might be released from adipocytes into the bloodstream. However, the mechanisms associated with the release of PCBs have been poorly studied. Several in vivo studies followed their dynamics of release but the complexity of the in vivo situation, which is characterised by a large range of pollutants, does not allow understanding precisely the behaviour of individual congeners. The present in vitro experiment studied the impact of (i) the number and position of chlorine atoms of PCBs on their release from adipocytes and (ii) the presence of other PCB congeners on the mobilisation rate of such molecules. METHODOLOGY/PRINCIPAL

FINDINGS:

Differentiated rat adipocytes were used to compare the behaviour of PCB-28, -118 and -153. Cells were contaminated with the three congeners, alone or in cocktail, and a lipolysis was then induced with isoproterenol during 12 hours. Our data indicate that the three congeners were efficiently released from adipocytes and accumulated in the medium during the lipolysis. Interestingly, for a same level of cell lipids, PCB-153, a hexa-CB with two chlorine atoms in ortho-position, was mobilised slower than PCB-28, a tri-CB, and PCB-118, a penta-CB, which are both characterised by one chlorine atom in ortho-position. It suggests an impact of the chemical properties of pollutants on their mobilisation during periods of negative energy balance. Moreover, the mobilisation of PCB congeners, taken individually, did not seem to be influenced by the presence of other congeners within adipocytes. CONCLUSION/

SIGNIFICANCE:

These results not only highlight the obvious mobilisation of PCBs from adipocytes during lipolysis, in parallel to lipids, but also demonstrate that the structure of congeners defines their rate of release from adipocytes.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polychlorinated Biphenyls / Adipocytes / Environmental Pollutants Limits: Animals Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2014 Document type: Article Affiliation country: Belgium

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polychlorinated Biphenyls / Adipocytes / Environmental Pollutants Limits: Animals Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2014 Document type: Article Affiliation country: Belgium