Chemistry-dependent X-ray-induced surface charging.
Phys Chem Chem Phys
; 16(40): 22255-61, 2014 Oct 28.
Article
in En
| MEDLINE
| ID: mdl-25219347
Materials science in general, and surface/interface science in particular, have greatly benefited from the development of high energy synchrotron radiation facilities. Irradiation with intense ionizing beams can however influence relevant sample properties. Permanent radiation damage and irradiation-induced sample modifications have been investigated in detail during the last decades. Conversely, reversible sample alterations taking place only during irradiation are still lacking comprehensive in situ characterization. Irradiation-induced surface charging phenomena are particularly relevant for a wide range of interface science investigations, in particular those involving surfaces of solid substrates in contact with gaseous or liquid phases. Here, we demonstrate partially reversible radiation-induced surface charging phenomena, which extend far beyond the spatial dimensions of the X-ray beam mainly as a consequence of the interaction between the surface and ionized ambient molecules. The charging magnitude and sign are found to be surface chemistry specific and dependent on the substrates' bulk conductivity and grounding conditions. These results are obtained by combining a scanning Kelvin probe with a synchrotron surface diffractometer to allow simultaneous in situ work function measurements during precisely controlled hard X-ray micro-beam irradiation.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Phys Chem Chem Phys
Journal subject:
BIOFISICA
/
QUIMICA
Year:
2014
Document type:
Article
Affiliation country:
Germany
Country of publication:
United kingdom