Your browser doesn't support javascript.
loading
Retinoic acid receptor signaling is required to maintain glucose-stimulated insulin secretion and ß-cell mass.
Brun, Pierre-Jacques; Grijalva, Ambar; Rausch, Richard; Watson, Elizabeth; Yuen, Jason J; Das, Bhaskar C; Shudo, Koichi; Kagechika, Hiroyuki; Leibel, Rudolph L; Blaner, William S.
Affiliation
  • Brun PJ; Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institut
  • Grijalva A; Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institut
  • Rausch R; Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institut
  • Watson E; Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institut
  • Yuen JJ; Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institut
  • Das BC; Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institut
  • Shudo K; Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institut
  • Kagechika H; Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institut
  • Leibel RL; Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institut
  • Blaner WS; Departments of *Medicine and Pediatrics and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY USA; Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, USA; Research Foundation Itsuu Laboratory, Tokyo, Japan; and Institut
FASEB J ; 29(2): 671-83, 2015 Feb.
Article in En | MEDLINE | ID: mdl-25389133
ABSTRACT
Retinoic acid signaling is required for maintaining a range of cellular processes, including cell differentiation, proliferation, and apoptosis. We investigated the actions of all-trans-retinoic acid (atRA) signaling in pancreatic ß-cells of adult mice. atRA signaling was ablated in ß-cells by overexpressing a dominant-negative retinoic acid receptor (RAR)-α mutant (RARdn) using an inducible Cre-Lox system under the control of the pancreas duodenal homeobox gene promoter. Our studies establish that hypomorphism for RAR in ß-cells leads to an age-dependent decrease in plasma insulin in the fed state and in response to a glucose challenge. Glucose-stimulated insulin secretion was also impaired in islets isolated from mice expressing RARdn. Among genes that are atRA responsive, Glut2 and Gck mRNA levels were decreased in isolated islets from RARdn-expressing mice. Histologic analyses of RARdn-expressing pancreata revealed a decrease in ß-cell mass and insulin per ß-cell 1 mo after induction of the RARdn. Our results indicate that atRA signaling mediated by RARs is required in the adult pancreas for maintaining both ß-cell function and mass, and provide insights into molecular mechanisms underlying these actions.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Blood Glucose / Receptors, Retinoic Acid / Insulin-Secreting Cells / Insulin Limits: Animals Language: En Journal: FASEB J Journal subject: BIOLOGIA / FISIOLOGIA Year: 2015 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Blood Glucose / Receptors, Retinoic Acid / Insulin-Secreting Cells / Insulin Limits: Animals Language: En Journal: FASEB J Journal subject: BIOLOGIA / FISIOLOGIA Year: 2015 Document type: Article