Your browser doesn't support javascript.
loading
Crosstalk between HSF1 and HSF2 during the heat shock response in mouse testes.
Korfanty, Joanna; Stokowy, Tomasz; Widlak, Piotr; Gogler-Piglowska, Agnieszka; Handschuh, Luiza; Podkowinski, Jan; Vydra, Natalia; Naumowicz, Anna; Toma-Jonik, Agnieszka; Widlak, Wieslawa.
Affiliation
  • Korfanty J; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland. Electronic address: joanna1540@op.pl.
  • Stokowy T; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland; Department of Clinical Science, University of Bergen, Postboks 7800, 5020 Bergen, Norway. Electronic address: tomasz.stokowy@k2.uib.no.
  • Widlak P; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland. Electronic address: widlak@io.gliwice.pl.
  • Gogler-Piglowska A; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland. Electronic address: agogler@io.gliwice.pl.
  • Handschuh L; Microarray and Deep Sequencing Laboratory, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 84, 60-569 Poznan, Poland. Electronic a
  • Podkowinski J; Microarray and Deep Sequencing Laboratory, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland. Electronic address: jpodkow@man.poznan.pl.
  • Vydra N; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland. Electronic address: nvydra@yahoo.co.uk.
  • Naumowicz A; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland; Institute of Automatic Control, The Silesian University of Technology, 44-100 Gliwice, Poland. Electronic address: annanaumowicz@o2.pl.
  • Toma-Jonik A; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland. Electronic address: agatoma5@wp.pl.
  • Widlak W; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland. Electronic address: wwidlak@io.gliwice.pl.
Int J Biochem Cell Biol ; 57: 76-83, 2014 Dec.
Article in En | MEDLINE | ID: mdl-25450459
ABSTRACT
Heat Shock Factor 1 (HSF1) is the primary transcription factor responsible for the response to cellular stress, while HSF2 becomes activated during development and differentiation, including spermatogenesis. Although both factors are indispensable for proper spermatogenesis, activation of HSF1 by heat shock initiates apoptosis of spermatogenic cells leading to infertility of males. To characterize mechanisms assisting such heat induced apoptosis we studied how HSF1 and HSF2 cooperate during the heat shock response. For this purpose we used chromatin immunoprecipitation and the proximity ligation approaches. We looked for co-occupation of binding sites by HSF1 and HSF2 in untreated (32 °C) or heat shocked (at 38 °C or 43 °C) spermatocytes, which are cells the most sensitive to hyperthermia. At the physiological temperature or after mild hyperthermia at 38 °C, the sharing of binding sites for both HSFs was observed mainly in promoters of Hsp genes and other stress-related genes. Strong hyperthermia at 43 °C resulted in an increased binding of HSF1 and releasing of HSF2, hence co-occupation of promoter regions was not detected any more. The close proximity of HSF1 and HSF2 (and/or existence of HSF1/HSF2 complexes) was frequent at the physiological temperature. Temperature elevation resulted in a decreased number of such complexes and they were barely detected after strong hyperthermia at 43 °C. We have concluded that at the physiological temperature HSF1 and HSF2 cooperate in spermatogenic cells. However, temperature elevation causes remodeling of chromatin binding and interactions between HSFs are disrupted. This potentially affects the regulation of stress response and contributes to the heat sensitivity of these cells.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Testis / Transcription Factors / Heat-Shock Response / DNA-Binding Proteins / Heat-Shock Proteins Limits: Animals Language: En Journal: Int J Biochem Cell Biol Journal subject: BIOQUIMICA Year: 2014 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Testis / Transcription Factors / Heat-Shock Response / DNA-Binding Proteins / Heat-Shock Proteins Limits: Animals Language: En Journal: Int J Biochem Cell Biol Journal subject: BIOQUIMICA Year: 2014 Document type: Article