Your browser doesn't support javascript.
loading
Ultrastable cellulosome-adhesion complex tightens under load.
Schoeler, Constantin; Malinowska, Klara H; Bernardi, Rafael C; Milles, Lukas F; Jobst, Markus A; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Schulten, Klaus; Gaub, Hermann E; Nash, Michael A.
Affiliation
  • Schoeler C; Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany.
  • Malinowska KH; Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany.
  • Bernardi RC; Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
  • Milles LF; Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany.
  • Jobst MA; Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany.
  • Durner E; Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany.
  • Ott W; Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany.
  • Fried DB; Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
  • Bayer EA; Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
  • Schulten K; 1] Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [2] Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
  • Gaub HE; Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany.
  • Nash MA; Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany.
Nat Commun ; 5: 5635, 2014 Dec 08.
Article in En | MEDLINE | ID: mdl-25482395
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cellulosomes / Ruminococcus Type of study: Prognostic_studies Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2014 Document type: Article Affiliation country: Germany Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cellulosomes / Ruminococcus Type of study: Prognostic_studies Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2014 Document type: Article Affiliation country: Germany Country of publication: United kingdom