Artificial neural network for charge prediction in metabolite identification by mass spectrometry.
Methods Mol Biol
; 1260: 89-100, 2015.
Article
in En
| MEDLINE
| ID: mdl-25502377
Collision-induced dissociation (CID) is widely used in mass spectrometry to identify biologically important molecules by gaining information about their internal structure. Interpretation of experimental CID spectra always involves some form of in silico spectra of potential candidate molecules. Knowledge of how charge is distributed among fragments is an important part of CID simulations that generate in silico spectra from the chemical structure of the precursor ions entering the collision chamber. In this chapter we describe a method to obtain this knowledge by machine learning.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Mass Spectrometry
/
Proteins
Type of study:
Diagnostic_studies
/
Health_economic_evaluation
/
Prognostic_studies
/
Risk_factors_studies
Language:
En
Journal:
Methods Mol Biol
Journal subject:
BIOLOGIA MOLECULAR
Year:
2015
Document type:
Article
Country of publication:
United States