Your browser doesn't support javascript.
loading
The singlet-oxygen-sensitized delayed fluorescence in mammalian cells: a time-resolved microscopy approach.
Scholz, Marek; Biehl, Anna-Louisa; Dedic, Roman; Hála, Jan.
Affiliation
  • Scholz M; Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, 121 16 Praha 2, The Czech Republic. marasolc@centrum.cz.
Photochem Photobiol Sci ; 14(4): 700-13, 2015 Apr.
Article in En | MEDLINE | ID: mdl-25591544
ABSTRACT
The present work provides a proof-of-concept that the singlet oxygen-sensitized delayed fluorescence (SOSDF) can be detected from individual living mammalian cells in a time-resolved microscopy experiment. To this end, 3T3 mouse fibroblasts incubated with 100 µM TPPS4 or TMPyP were used and the microsecond kinetics of the delayed fluorescence (DF) were recorded. The analysis revealed that SOSDF is the major component of the overall DF signal. The microscopy approach enables precise control of experimental conditions - the DF kinetics are clearly influenced by the presence of the (1)O2 quencher (sodium azide), H2O/D2O exchange, and the oxygen concentration. Analysis of SOSDF kinetics, which was reconstructed as a difference DF kinetics between the unquenched and the NaN3-quenched samples, provides a cellular (1)O2 lifetime of τΔ = 1-2 µs and a TPPS4 triplet lifetime of τT = 22 ± 5 µs in agreement with previously published values. The short SOSDF acquisition times, typically in the range of tens of seconds, enable us to study the dynamic cellular processes. It is shown that SOSDF lifetimes increase during PDT-like treatment, which may provide valuable information about changes of the intracellular microenvironment. SOSDF is proposed and evaluated as an alternative tool for (1)O2 detection in biological systems.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Singlet Oxygen / Fluorescence / Microscopy Limits: Animals Language: En Journal: Photochem Photobiol Sci Journal subject: BIOLOGIA / QUIMICA Year: 2015 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Singlet Oxygen / Fluorescence / Microscopy Limits: Animals Language: En Journal: Photochem Photobiol Sci Journal subject: BIOLOGIA / QUIMICA Year: 2015 Document type: Article