Upregulation of Death Receptor 5 and Production of Reactive Oxygen Species Mediate Sensitization of PC-3 Prostate Cancer Cells to TRAIL Induced Apoptosis by Vitisin A.
Cell Physiol Biochem
; 36(3): 1151-62, 2015.
Article
in En
| MEDLINE
| ID: mdl-26111475
BACKGROUND/AIMS: Although Vitisin A, derived from wine grapes, is known to have cytotoxic, anti-adipogenic, anti-inflammatory and antioxidant effects, the underlying antitumor mechanism has not been investigated in prostate cancer cells to date. In the present study, the apoptotic mechanism of Vitisin A plus TNF-related apoptosis-inducing ligand (TRAIL) in prostate cancer cells was elucidated. METHODS: The cytotoxicity of Vitisin A and/or TRAIL against PC-3, DU145 and LNCaP prostate cancer cells was measured by MTT colorimetric assay. Annexin V-FITC Apoptosis Detection kit was used to detect apoptotic cells by flow cytometry. Intracellular levels of ROS were measured by flow cytometry using 2070-diacetyl dichlorofluorescein (DCFDA). RESULTS: Combined treatment with Vitisin A and TRAIL enhanced cytotoxicity and also increased sub-G1 population in PC-3 cells better than DU145 or LNCap prostate cancer cells. Similarly, Annexin V and PI staining revealed that combination increased early and late apoptosis in PC-3 cells compared to untreated control. Consistently, combination attenuated the expression of pro-caspases 7/8, DcR1, Bcl-XL or Bcl-2 and activated caspase 3, FADD, DR5 and DR4 in PC-3 cells. Also, combination increased DR5 promoter activity compared to untreated control. Furthermore, combination increased the production of reactive oxygen species (ROS) and DR5 cell surface expression. The ROS inhibitor NAC and silencing of DR5 by siRNA transfection inhibited the ability of combination to induce PARP cleavage and generate ROS. CONCLUSION: These findings provide evidence that Vitisin A can be used in conjunction with TRAIL as a potent TRAIL sensitizer for synergistic apoptosis induction via upregulation of DR5 and production of ROS in prostate cancer cells.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Phenols
/
Prostate
/
Benzofurans
/
Gene Expression Regulation, Neoplastic
/
Reactive Oxygen Species
/
TNF-Related Apoptosis-Inducing Ligand
/
Receptors, TNF-Related Apoptosis-Inducing Ligand
/
Antineoplastic Agents, Phytogenic
Limits:
Humans
/
Male
Language:
En
Journal:
Cell Physiol Biochem
Journal subject:
BIOQUIMICA
/
FARMACOLOGIA
Year:
2015
Document type:
Article
Affiliation country:
Korea (South)
Country of publication:
Germany