Your browser doesn't support javascript.
loading
CUX2 protein functions as an accessory factor in the repair of oxidative DNA damage.
Pal, Ranjana; Ramdzan, Zubaidah M; Kaur, Simran; Duquette, Philippe M; Marcotte, Richard; Leduy, Lam; Davoudi, Sayeh; Lamarche-Vane, Nathalie; Iulianella, Angelo; Nepveu, Alain.
Affiliation
  • Pal R; From the Goodman Cancer Research Centre and.
  • Ramdzan ZM; From the Goodman Cancer Research Centre and.
  • Kaur S; From the Goodman Cancer Research Centre and Departments of Biochemistry.
  • Duquette PM; Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 1A3, Canada.
  • Marcotte R; Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada, and.
  • Leduy L; From the Goodman Cancer Research Centre and.
  • Davoudi S; Departments of Biochemistry.
  • Lamarche-Vane N; Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 1A3, Canada.
  • Iulianella A; Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax B3H 4R2, Canada.
  • Nepveu A; From the Goodman Cancer Research Centre and Departments of Biochemistry, Medicine, Oncology, and alain.nepveu@mcgill.ca.
J Biol Chem ; 290(37): 22520-31, 2015 Sep 11.
Article in En | MEDLINE | ID: mdl-26221032
CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: DNA Damage / Cerebral Cortex / Homeodomain Proteins / DNA Repair / Neurons Limits: Animals / Humans Language: En Journal: J Biol Chem Year: 2015 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: DNA Damage / Cerebral Cortex / Homeodomain Proteins / DNA Repair / Neurons Limits: Animals / Humans Language: En Journal: J Biol Chem Year: 2015 Document type: Article Country of publication: United States