Microbial Community Composition and Extracellular Enzyme Activities Associated with Juncus roemerianus and Spartina alterniflora Vegetated Sediments in Louisiana Saltmarshes.
Microb Ecol
; 71(2): 290-303, 2016 Feb.
Article
in En
| MEDLINE
| ID: mdl-26271740
Saltmarshes are typically dominated by perennial grasses with large underground rhizome systems that can change local sediment conditions and be important in shaping the sediment microbial community. Factors such as salinity that control plant zonation in saltmarshes are also likely to influence the microbial community, but little is known as to whether microbial communities share distribution patterns with plants in these systems. To determine the extent to which microbial assemblages are influenced by saltmarsh plant communities, as well as to examine patterns in microbial community structure at local and regional scales, we sampled sediments at three saltmarshes in Louisiana, USA. All three systems exhibit a patchy distribution of Juncus roemerianus stands within a Spartina alterniflora marsh. Sediment samples were collected from the interior of several J. roemerianus stands as well as from the S. alterniflora matrix. Samples were assayed for extracellular enzyme activity and DNA extracted to determine microbial community composition. Denaturing gradient gel electrophoresis of rRNA gene fragments was used to determine regional patterns in bacterial, archaeal, and fungal assemblages, while Illumina sequencing was used to examine local, vegetation-driven, patterns in community structure at one site. Both enzyme activity and microbial community structure were primarily influenced by regional site. Within individual saltmarshes, bacterial and archaeal communities differed between J. roemerianus and S. alterniflora vegetated sediments, while fungal communities did not. These results highlight the importance of the plant community in shaping the sediment microbial community in saltmarshes but also demonstrate that regional scale factors are at least as important.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Bacteria
/
Geologic Sediments
/
Magnoliopsida
/
Fungi
/
Poaceae
Type of study:
Risk_factors_studies
Country/Region as subject:
America do norte
Language:
En
Journal:
Microb Ecol
Year:
2016
Document type:
Article
Affiliation country:
United States
Country of publication:
United States