Your browser doesn't support javascript.
loading
An improved statistical analysis for predicting the critical temperature and critical density with Gibbs ensemble Monte Carlo simulation.
Messerly, Richard A; Rowley, Richard L; Knotts, Thomas A; Wilding, W Vincent.
Affiliation
  • Messerly RA; Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA.
  • Rowley RL; Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA.
  • Knotts TA; Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA.
  • Wilding WV; Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA.
J Chem Phys ; 143(10): 104101, 2015 Sep 14.
Article in En | MEDLINE | ID: mdl-26374012
A rigorous statistical analysis is presented for Gibbs ensemble Monte Carlo simulations. This analysis reduces the uncertainty in the critical point estimate when compared with traditional methods found in the literature. Two different improvements are recommended due to the following results. First, the traditional propagation of error approach for estimating the standard deviations used in regression improperly weighs the terms in the objective function due to the inherent interdependence of the vapor and liquid densities. For this reason, an error model is developed to predict the standard deviations. Second, and most importantly, a rigorous algorithm for nonlinear regression is compared to the traditional approach of linearizing the equations and propagating the error in the slope and the intercept. The traditional regression approach can yield nonphysical confidence intervals for the critical constants. By contrast, the rigorous algorithm restricts the confidence regions to values that are physically sensible. To demonstrate the effect of these conclusions, a case study is performed to enhance the reliability of molecular simulations to resolve the n-alkane family trend for the critical temperature and critical density.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: J Chem Phys Year: 2015 Document type: Article Affiliation country: United States Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: J Chem Phys Year: 2015 Document type: Article Affiliation country: United States Country of publication: United States