Your browser doesn't support javascript.
loading
Gd-AAZTA-MADEC, an improved blood pool agent for DCE-MRI studies on mice on 1 T scanners.
Longo, Dario Livio; Arena, Francesca; Consolino, Lorena; Minazzi, Paolo; Geninatti-Crich, Simonetta; Giovenzana, Giovanni Battista; Aime, Silvio.
Affiliation
  • Longo DL; Istituto di Biostrutture e Bioimmagini (CNR) c/o Molecular Biotechnology Center, Via Nizza 52, 10126, Torino, Italy; Molecular Imaging Center, University of Torino, Via Nizza 52, 10126, Torino, Italy. Electronic address: dario.longo@unito.it.
  • Arena F; Molecular Imaging Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.
  • Consolino L; Molecular Imaging Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy; CAGE Chemicals Srl, Via Bovio 6, 28100, Novara, Italy.
  • Minazzi P; Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "A. Avogadro" Largo Donegani 2/3, 28100, Novara, Italy; CAGE Chemicals Srl, Via Bovio 6, 28100, Novara, Italy.
  • Geninatti-Crich S; Molecular Imaging Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.
  • Giovenzana GB; Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "A. Avogadro" Largo Donegani 2/3, 28100, Novara, Italy; CAGE Chemicals Srl, Via Bovio 6, 28100, Novara, Italy.
  • Aime S; Istituto di Biostrutture e Bioimmagini (CNR) c/o Molecular Biotechnology Center, Via Nizza 52, 10126, Torino, Italy; Molecular Imaging Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 1012
Biomaterials ; 75: 47-57, 2016 Jan.
Article in En | MEDLINE | ID: mdl-26480471
ABSTRACT
A novel MRI blood-pool contrast agent (Gd-AAZTA-MADEC) has been compared with established blood pool agents for tumor contrast enhanced images and angiography. Synthesis, relaxometric properties, albumin binding affinity and pharmacokinetic profiles are reported. For in vivo studies, angiographic images and tumor contrast enhanced images were acquired on mice with benchtop 1T-MRI scanners and compared with MS-325, B22956/1 and B25716/1. The design of this contrast agent involved the elongation of the spacer between the targeting deoxycholic acid moiety and the Gd-AAZTA imaging reporting unit that drastically changed either the binding affinity to albumin (KA(HSA) = 8.3 × 10(5) M(-1)) and the hydration state of the Gd ion (q = 2) in comparison to the recently reported B25716/1. The very markedly high binding affinity towards mouse and human serum albumins resulted in peculiar pharmacokinetics and relaxometric properties. The NMRD profiles clearly indicated that maximum efficiency is attainable at magnetic field strength of 1 T. In vivo studies showed high enhancement of the vasculature and a prolonged accumulation inside tumor. The herein reported pre-clinical imaging studies show that a great benefit arises from the combination of a benchtop MRI scanner operating at 1 T and the albumin-binding Gd-AAZTA-MADEC complex, for pursuing enhanced angiography and improved characterization of tumor vascular microenvironment.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Magnetic Resonance Imaging / Gated Blood-Pool Imaging / Cholic Acids / Contrast Media / Coordination Complexes Type of study: Diagnostic_studies Limits: Animals / Humans / Male Language: En Journal: Biomaterials Year: 2016 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Magnetic Resonance Imaging / Gated Blood-Pool Imaging / Cholic Acids / Contrast Media / Coordination Complexes Type of study: Diagnostic_studies Limits: Animals / Humans / Male Language: En Journal: Biomaterials Year: 2016 Document type: Article