Your browser doesn't support javascript.
loading
PPARγ Represses Apolipoprotein A-I Gene but Impedes TNFα-Mediated ApoA-I Downregulation in HepG2 Cells.
Shavva, Vladimir S; Mogilenko, Denis A; Bogomolova, Alexandra M; Nikitin, Artemy A; Dizhe, Ella B; Efremov, Alexander M; Oleinikova, Galina N; Perevozchikov, Andrej P; Orlov, Sergey V.
Affiliation
  • Shavva VS; Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.
  • Mogilenko DA; Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
  • Bogomolova AM; Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.
  • Nikitin AA; Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
  • Dizhe EB; Department of Biochemistry, St. Petersburg State University, St. Petersburg, Russia.
  • Efremov AM; Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.
  • Oleinikova GN; Department of Biochemistry, St. Petersburg State University, St. Petersburg, Russia.
  • Perevozchikov AP; Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.
  • Orlov SV; Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.
J Cell Biochem ; 117(9): 2010-22, 2016 09.
Article in En | MEDLINE | ID: mdl-26813964
ABSTRACT
Apolipoprotein A-I (ApoA-I) is the main anti-atherogenic component of human high-density lipoproteins (HDL). ApoA-I gene expression is regulated by several nuclear receptors, which are the sensors for metabolic changes during development of cardiovascular diseases. Activation of nuclear receptor PPARγ has been shown to impact lipid metabolism as well as inflammation. Here, we have shown that synthetic PPARγ agonist GW1929 decreases both ApoA-I mRNA and protein levels in HepG2 cells and the effect of GW1929 on apoA-I gene transcription depends on PPARγ. PPARγ binds to the sites A and C within the hepatic enhancer of apoA-I gene and the negative regulation of apoA-I gene transcription by PPARγ appears to be realized via the site C (-134 to -119). Ligand activation of PPARγ leads to an increase of LXRß and a decrease of PPARα binding to the apoA-I gene hepatic enhancer in HepG2 cells. GW1929 abolishes the TNFα-mediated decrease of ApoA-I mRNA expression in both HepG2 and Caco-2 cells but does not block TNFα-mediated inhibition of ApoA-I protein secretion by HepG2 cells. These data demonstrate that complex of PPARγ with GW1929 is a negative regulator involved in the control of ApoA-I expression and secretion in human hepatocyte- and enterocyte-like cells. J. Cell. Biochem. 117 2010-2022, 2016. © 2016 Wiley Periodicals, Inc.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Down-Regulation / Enhancer Elements, Genetic / Tumor Necrosis Factor-alpha / Apolipoprotein A-I / Enterocytes / Hepatocytes / PPAR gamma Limits: Humans Language: En Journal: J Cell Biochem Year: 2016 Document type: Article Affiliation country: RUSSIA

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Down-Regulation / Enhancer Elements, Genetic / Tumor Necrosis Factor-alpha / Apolipoprotein A-I / Enterocytes / Hepatocytes / PPAR gamma Limits: Humans Language: En Journal: J Cell Biochem Year: 2016 Document type: Article Affiliation country: RUSSIA