Your browser doesn't support javascript.
loading
A quantum dot-spore nanocomposite pH sensor.
Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang.
Affiliation
  • Zhang X; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • Li Z; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • Zhou T; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • Zhou Q; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • Zeng Z; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  • Xu X; School of Public Health, Hebei Medical University, Shijiazhuang 050017, China.
  • Hu Y; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address: yongganghu@mail.hzau.edu.cn.
Talanta ; 150: 184-9, 2016 Apr 01.
Article in En | MEDLINE | ID: mdl-26838398
ABSTRACT
A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Talanta Year: 2016 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Talanta Year: 2016 Document type: Article Affiliation country: China