Dynamic regional phase synchrony (DRePS): An Instantaneous Measure of Local fMRI Connectivity Within Spatially Clustered Brain Areas.
Hum Brain Mapp
; 37(5): 1970-85, 2016 May.
Article
in En
| MEDLINE
| ID: mdl-27019380
Dynamic functional brain connectivity analysis is a fast expanding field in computational neuroscience research with the promise of elucidating brain network interactions. Sliding temporal window based approaches are commonly used in order to explore dynamic behavior of brain networks in task-free functional magnetic resonance imaging (fMRI) data. However, the low effective temporal resolution of sliding window methods fail to capture the full dynamics of brain activity at each time point. These also require subjective decisions regarding window size and window overlap. In this study, we introduce dynamic regional phase synchrony (DRePS), a novel analysis approach that measures mean local instantaneous phase coherence within adjacent fMRI voxels. We evaluate the DRePS framework on simulated data showing that the proposed measure is able to estimate synchrony at higher temporal resolution than sliding windows of local connectivity. We applied DRePS analysis to task-free fMRI data of 20 control subjects, revealing ultra-slow dynamics of local connectivity in different brain areas. Spatial clustering based on the DRePS feature time series reveals biologically congruent local phase synchrony networks (LPSNs). Taken together, our results demonstrate three main findings. Firstly, DRePS has increased temporal sensitivity compared to sliding window correlation analysis in capturing locally synchronous events. Secondly, DRePS of task-free fMRI reveals ultra-slow fluctuations of â¼0.002-0.02 Hz. Lastly, LPSNs provide plausible spatial information about time-varying brain local phase synchrony. With the DRePS method, we introduce a framework for interrogating brain local connectivity, which can potentially provide biomarkers of human brain function in health and disease. Hum Brain Mapp 37:1970-1985, 2016. © 2016 Wiley Periodicals, Inc.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Brain
/
Brain Mapping
/
Magnetic Resonance Imaging
/
Nonlinear Dynamics
/
Models, Neurological
Type of study:
Prognostic_studies
Limits:
Humans
Language:
En
Journal:
Hum Brain Mapp
Journal subject:
CEREBRO
Year:
2016
Document type:
Article
Affiliation country:
Australia
Country of publication:
United States