Synthesis and characterization of two novel bimetallic macrocyclic complexes generated from 1,2,4-triazole-containing semi-rigid ligands and M(NO3)2 units (M = Ni and Zn).
Acta Crystallogr C Struct Chem
; 72(Pt 4): 285-90, 2016 Apr.
Article
in En
| MEDLINE
| ID: mdl-27045178
Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi-rigid organic ligands containing 1,2,4-triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi-rigid ligands in the self-assembly process than by making use of rigid ligands. A new semi-rigid ligand, 3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{µ-3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine}bis[(methanol-κO)(nitrato-κ(2)O,O')nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{µ-3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine}bis[(methanol-κO)(nitrato-κ(2)O,O')zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic salts M(NO3)2 (M = Ni and Zn, respectively) in mixed solvents. In (I), two Ni(II) cations with the same coordination environment are linked by L ligands through Ni-N bonds to form a bimetallic ring. Compound (I) is extended into a two-dimensional network in the crystallographic ac plane via N-H...O, O-H...N and O-H...O hydrogen bonds, and neighbouring two-dimensional planes are parallel and form a three-dimensional structure via π-π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the Zn(II) cations. The Zn(II) cations are bridged by L ligands through Zn-N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one-dimensional nanotube via O-H...O and N-H...O hydrogen bonds along the crystallographic a direction, and the other constructs zero-dimensional molecular cages via O-H...O and N-H...O hydrogen bonds. They are interlinked into a two-dimensional network in the ac plane through extensive N-H...O hydrogen bonds, and a three-dimensional supramolecular architecture is formed via π-π interactions between the centroids of the benzene rings of the quinoline ring systems.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Acta Crystallogr C Struct Chem
Year:
2016
Document type:
Article
Country of publication:
United kingdom