Your browser doesn't support javascript.
loading
Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides.
Kapoor, Khyati; Finer-Moore, Janet S; Pedersen, Bjørn P; Caboni, Laura; Waight, Andrew; Hillig, Roman C; Bringmann, Peter; Heisler, Iring; Müller, Thomas; Siebeneicher, Holger; Stroud, Robert M.
Affiliation
  • Kapoor K; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158;
  • Finer-Moore JS; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158;
  • Pedersen BP; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark;
  • Caboni L; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158;
  • Waight A; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158;
  • Hillig RC; Bayer Pharma AG, Drug Discovery, 13353 Berlin, Germany;
  • Bringmann P; Bayer Pharmaceuticals, Biologics Research, San Francisco, CA 94158;
  • Heisler I; Bayer Pharma AG, Drug Discovery, 42096 Wuppertal, Germany.
  • Müller T; Bayer Pharma AG, Drug Discovery, 42096 Wuppertal, Germany.
  • Siebeneicher H; Bayer Pharma AG, Drug Discovery, 13353 Berlin, Germany;
  • Stroud RM; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; stroud@msg.ucsf.edu.
Proc Natl Acad Sci U S A ; 113(17): 4711-6, 2016 Apr 26.
Article in En | MEDLINE | ID: mdl-27078104
ABSTRACT
Cancerous cells have an acutely increased demand for energy, leading to increased levels of human glucose transporter 1 (hGLUT1). This up-regulation suggests hGLUT1 as a target for therapeutic inhibitors addressing a multitude of cancer types. Here, we present three inhibitor-bound, inward-open structures of WT-hGLUT1 crystallized with three different inhibitors cytochalasin B, a nine-membered bicyclic ring fused to a 14-membered macrocycle, which has been described extensively in the literature of hGLUTs, and two previously undescribed Phe amide-derived inhibitors. Despite very different chemical backbones, all three compounds bind in the central cavity of the inward-open state of hGLUT1, and all binding sites overlap the glucose-binding site. The inhibitory action of the compounds was determined for hGLUT family members, hGLUT1-4, using cell-based assays, and compared with homology models for these hGLUT members. This comparison uncovered a probable basis for the observed differences in inhibition between family members. We pinpoint regions of the hGLUT proteins that can be targeted to achieve isoform selectivity, and show that these same regions are used for inhibitors with very distinct structural backbones. The inhibitor cocomplex structures of hGLUT1 provide an important structural insight for the design of more selective inhibitors for hGLUTs and hGLUT1 in particular.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phenylalanine / Cytochalasins / Glucose Transporter Type 1 / Glucose Limits: Humans Language: En Journal: Proc Natl Acad Sci U S A Year: 2016 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phenylalanine / Cytochalasins / Glucose Transporter Type 1 / Glucose Limits: Humans Language: En Journal: Proc Natl Acad Sci U S A Year: 2016 Document type: Article