Your browser doesn't support javascript.
loading
Sequential Acquisition of Virulence and Fluoroquinolone Resistance Has Shaped the Evolution of Escherichia coli ST131.
Ben Zakour, Nouri L; Alsheikh-Hussain, Areej S; Ashcroft, Melinda M; Khanh Nhu, Nguyen Thi; Roberts, Leah W; Stanton-Cook, Mitchell; Schembri, Mark A; Beatson, Scott A.
Affiliation
  • Ben Zakour NL; Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
  • Alsheikh-Hussain AS; Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
  • Ashcroft MM; Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
  • Khanh Nhu NT; Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
  • Roberts LW; Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
  • Stanton-Cook M; Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
  • Schembri MA; Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia m.schembri@uq.edu.au s.beatson@uq.edu.au.
  • Beatson SA; Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia m.schembri@uq.edu.au s.
mBio ; 7(2): e00347-16, 2016 Apr 26.
Article in En | MEDLINE | ID: mdl-27118589
UNLABELLED: Escherichia coli ST131 is the most frequently isolated fluoroquinolone-resistant (FQR) E. coli clone worldwide and a major cause of urinary tract and bloodstream infections. Although originally identified through its association with the CTX-M-15 extended-spectrum ß-lactamase resistance gene, global genomic epidemiology studies have failed to resolve the geographical and temporal origin of the ST131 ancestor. Here, we developed a framework for the reanalysis of publically available genomes from different countries and used this data set to reconstruct the evolutionary steps that led to the emergence of FQR ST131. Using Bayesian estimation, we show that point mutations in chromosomal genes that confer FQR coincide with the first clinical use of fluoroquinolone in 1986 and illustrate the impact of this pivotal event on the rapid population expansion of ST131 worldwide from an apparent origin in North America. Furthermore, we identify virulence factor acquisition events that predate the development of FQR, suggesting that the gain of virulence-associated genes followed by the tandem development of antibiotic resistance primed the successful global dissemination of ST131. IMPORTANCE: Escherichia coli sequence type 131 (ST131) is a recently emerged and globally disseminated multidrug-resistant clone frequently associated with human urinary tract and bloodstream infections. In this study, we have used two large publically available genomic data sets to define a number of critical steps in the evolution of this important pathogen. We show that resistance to fluoroquinolones, a class of broad-spectrum antibiotic used extensively in human medicine and veterinary practice, developed in ST131 soon after the introduction of these antibiotics in the United States, most likely in North America. We also mapped the acquisition of several fitness and virulence determinants by ST131 and demonstrate these events occurred prior to the development of fluoroquinolone resistance. Thus, ST131 has emerged by stealth, first acquiring genes associated with an increased capacity to cause human infection, and then gaining a resistance armory that has driven its massive population expansion across the globe.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Evolution, Molecular / Fluoroquinolones / Drug Resistance, Multiple, Bacterial / Escherichia coli / Escherichia coli Infections / Anti-Bacterial Agents Type of study: Prognostic_studies Limits: Humans Language: En Journal: MBio Year: 2016 Document type: Article Affiliation country: Australia Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Evolution, Molecular / Fluoroquinolones / Drug Resistance, Multiple, Bacterial / Escherichia coli / Escherichia coli Infections / Anti-Bacterial Agents Type of study: Prognostic_studies Limits: Humans Language: En Journal: MBio Year: 2016 Document type: Article Affiliation country: Australia Country of publication: United States