Your browser doesn't support javascript.
loading
Cationic liposomes produced via ethanol injection method for dendritic cell therapy.
Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Zômpero, Rafael Henrique Freitas; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; de la Torre, Lucimara Gaziola.
Affiliation
  • Vitor MT; a Department of Materials and Bioprocesses Engineering , School of Chemical Engineering, University of Campinas (Unicamp) , Campinas , Brazil and.
  • Bergami-Santos PC; b Department of Immunology , Institute of Biomedical Sciences, University of São Paulo (USP) , São Paulo , Brazil.
  • Zômpero RHF; a Department of Materials and Bioprocesses Engineering , School of Chemical Engineering, University of Campinas (Unicamp) , Campinas , Brazil and.
  • Cruz KSP; b Department of Immunology , Institute of Biomedical Sciences, University of São Paulo (USP) , São Paulo , Brazil.
  • Pinho MP; b Department of Immunology , Institute of Biomedical Sciences, University of São Paulo (USP) , São Paulo , Brazil.
  • Barbuto JAM; b Department of Immunology , Institute of Biomedical Sciences, University of São Paulo (USP) , São Paulo , Brazil.
  • de la Torre LG; a Department of Materials and Bioprocesses Engineering , School of Chemical Engineering, University of Campinas (Unicamp) , Campinas , Brazil and.
J Liposome Res ; 27(4): 249-263, 2017 Dec.
Article in En | MEDLINE | ID: mdl-27386901
ABSTRACT
Cationic liposomes can be designed and developed in order to be an efficient gene delivery system for mammalian cells. Dendritic cell (DC) vaccines can be used to treat cancer, as cationic liposomes can deliver tumor antigens to cells while cells remain active. However, most methods used for liposome production are not able to reproduce in large scale the physicochemical and biological properties of liposomes produced in laboratory scale. In this context, ethanol injection method achieved promising results, although requiring post-treatment for size reduction and/or to remove residual ethanol. Thus, the purpose of this study was to generate cationic liposomes suitable for gene therapies via ethanol injection method in only one step (VEI) and compared to those submitted to a size reduction processes by microfluidization (MFV). For this, the method to produce cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE) was optimized using a statistical design approach. As a result, the size of VEI decreased from 290 nm to 110 nm and the polydispersity from 0.54 to 0.17. In the case of MFV, size decreased from 128 nm to 107 nm and polydispersity from 0.40 to 0.18. ST and MFV before and after optimization were also characterized in terms of morphology by transmission electron microscopy (TEM) and structure by differential scanning calorimetry (DSC). Finally, to show their potential in gene/immune therapies applications, DCs were stimulated by such liposomes. Cells internalized liposomes, increasing expression of the costimulatory molecule CD86 and inducing T lymphocyte proliferation.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Gene Transfer Techniques / Ethanol / Liposomes Limits: Animals / Humans Language: En Journal: J Liposome Res Journal subject: BIOQUIMICA Year: 2017 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Gene Transfer Techniques / Ethanol / Liposomes Limits: Animals / Humans Language: En Journal: J Liposome Res Journal subject: BIOQUIMICA Year: 2017 Document type: Article