Your browser doesn't support javascript.
loading
Atom-at-a-time laser resonance ionization spectroscopy of nobelium.
Laatiaoui, Mustapha; Lauth, Werner; Backe, Hartmut; Block, Michael; Ackermann, Dieter; Cheal, Bradley; Chhetri, Premaditya; Düllmann, Christoph Emanuel; van Duppen, Piet; Even, Julia; Ferrer, Rafael; Giacoppo, Francesca; Götz, Stefan; Heßberger, Fritz Peter; Huyse, Mark; Kaleja, Oliver; Khuyagbaatar, Jadambaa; Kunz, Peter; Lautenschläger, Felix; Mistry, Andrew Kishor; Raeder, Sebastian; Ramirez, Enrique Minaya; Walther, Thomas; Wraith, Calvin; Yakushev, Alexander.
Affiliation
  • Laatiaoui M; Helmholtz-Institut Mainz, Staudingerweg 18, D-55128 Mainz, Germany.
  • Lauth W; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.
  • Backe H; Institut für Kernphysik, Johannes Gutenberg-Universität, Johann-Joachim-Becher Weg 45, D-55128 Mainz, Germany.
  • Block M; Institut für Kernphysik, Johannes Gutenberg-Universität, Johann-Joachim-Becher Weg 45, D-55128 Mainz, Germany.
  • Ackermann D; Helmholtz-Institut Mainz, Staudingerweg 18, D-55128 Mainz, Germany.
  • Cheal B; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.
  • Chhetri P; Institut für Kernchemie, Johannes Gutenberg-Universität, Fritz-Strassmann Weg 2, D-55128 Mainz, Germany.
  • Düllmann CE; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.
  • van Duppen P; Department of Physics, University of Liverpool, Oxford Street, Liverpool L69 7ZE, UK.
  • Even J; Institut für Angewandte Physik, Technische Universität Darmstadt, Schlossgartenstrasse 7, D-64289 Darmstadt, Germany.
  • Ferrer R; Helmholtz-Institut Mainz, Staudingerweg 18, D-55128 Mainz, Germany.
  • Giacoppo F; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.
  • Götz S; Institut für Kernchemie, Johannes Gutenberg-Universität, Fritz-Strassmann Weg 2, D-55128 Mainz, Germany.
  • Heßberger FP; KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
  • Huyse M; Helmholtz-Institut Mainz, Staudingerweg 18, D-55128 Mainz, Germany.
  • Kaleja O; KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
  • Khuyagbaatar J; Helmholtz-Institut Mainz, Staudingerweg 18, D-55128 Mainz, Germany.
  • Kunz P; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.
  • Lautenschläger F; Helmholtz-Institut Mainz, Staudingerweg 18, D-55128 Mainz, Germany.
  • Mistry AK; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.
  • Raeder S; Institut für Kernchemie, Johannes Gutenberg-Universität, Fritz-Strassmann Weg 2, D-55128 Mainz, Germany.
  • Ramirez EM; Helmholtz-Institut Mainz, Staudingerweg 18, D-55128 Mainz, Germany.
  • Walther T; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.
  • Wraith C; KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
  • Yakushev A; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt, Germany.
Nature ; 538(7626): 495-498, 2016 10 27.
Article in En | MEDLINE | ID: mdl-27680707
ABSTRACT
Optical spectroscopy of a primordial isotope has traditionally formed the basis for understanding the atomic structure of an element. Such studies have been conducted for most elements and theoretical modelling can be performed to high precision, taking into account relativistic effects that scale approximately as the square of the atomic number. However, for the transfermium elements (those with atomic numbers greater than 100), the atomic structure is experimentally unknown. These radioactive elements are produced in nuclear fusion reactions at rates of only a few atoms per second at most and must be studied immediately following their production, which has so far precluded their optical spectroscopy. Here we report laser resonance ionization spectroscopy of nobelium (No; atomic number 102) in single-atom-at-a-time quantities, in which we identify the ground-state transition 1S01P1. By combining this result with data from an observed Rydberg series, we obtain an upper limit for the ionization potential of nobelium. These accurate results from direct laser excitations of outer-shell electrons cannot be achieved using state-of-the-art relativistic many-body calculations that include quantum electrodynamic effects, owing to large uncertainties in the modelled transition energies of the complex systems under consideration. Our work opens the door to high-precision measurements of various atomic and nuclear properties of elements heavier than nobelium, and motivates future theoretical work.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nature Year: 2016 Document type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nature Year: 2016 Document type: Article Affiliation country: Germany
...