Your browser doesn't support javascript.
loading
Computational Design of Experiment Unveils the Conformational Reaction Coordinate of GH125 α-Mannosidases.
Alonso-Gil, Santiago; Males, Alexandra; Fernandes, Pearl Z; Williams, Spencer J; Davies, Gideon J; Rovira, Carme.
Affiliation
  • Alonso-Gil S; Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona , 08028 Barcelona, Spain.
  • Males A; York Structural Biology Laboratory, Department of Chemistry, The University of York , YO10 5DD York, United Kingdom.
  • Fernandes PZ; School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne, Victoria 3010, Australia.
  • Williams SJ; School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Melbourne, Victoria 3010, Australia.
  • Davies GJ; York Structural Biology Laboratory, Department of Chemistry, The University of York , YO10 5DD York, United Kingdom.
  • Rovira C; Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona , 08028 Barcelona, Spain.
J Am Chem Soc ; 139(3): 1085-1088, 2017 01 25.
Article in En | MEDLINE | ID: mdl-28026180
ABSTRACT
Conformational analysis of enzyme-catalyzed mannoside hydrolysis has revealed two predominant conformational itineraries through B2,5 or 3H4 transition-state (TS) conformations. A prominent unassigned catalytic itinerary is that of exo-1,6-α-mannosidases belonging to CAZy family 125. A published complex of Clostridium perfringens GH125 enzyme with a nonhydrolyzable 1,6-α-thiomannoside substrate mimic bound across the active site revealed an undistorted 4C1 conformation and provided no insight into the catalytic pathway of this enzyme. We show through a purely computational approach (QM/MM metadynamics) that sulfur-for-oxygen substitution in the glycosidic linkage fundamentally alters the energetically accessible conformational space of a thiomannoside when bound within the GH125 active site. Modeling of the conformational free energy landscape (FEL) of a thioglycoside strongly favors a mechanistically uninformative 4C1 conformation within the GH125 enzyme active site, but the FEL of corresponding O-glycoside substrate reveals a preference for a Michaelis complex in an OS2 conformation (consistent with catalysis through a B2,5 TS). This prediction was tested experimentally by determination of the 3D X-ray structure of the pseudo-Michaelis complex of an inactive (D220N) variant of C. perfringens GH125 enzyme in complex with 1,6-α-mannobiose. This complex revealed unambiguous distortion of the -1 subsite mannoside to an OS2 conformation, matching that predicted by theory and supporting an OS2 → B2,5 → 1S5 conformational itinerary for GH125 α-mannosidases. This work highlights the power of the QM/MM approach and identified shortcomings in the use of nonhydrolyzable substrate analogues for conformational analysis of enzyme-bound species.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Quantum Theory / Alpha-Mannosidase / Molecular Dynamics Simulation / Mannose Type of study: Prognostic_studies Language: En Journal: J Am Chem Soc Year: 2017 Document type: Article Affiliation country: Spain

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Quantum Theory / Alpha-Mannosidase / Molecular Dynamics Simulation / Mannose Type of study: Prognostic_studies Language: En Journal: J Am Chem Soc Year: 2017 Document type: Article Affiliation country: Spain