Your browser doesn't support javascript.
loading
MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls.
Cosgrove, D; Harold, D; Mothersill, O; Anney, R; Hill, M J; Bray, N J; Blokland, G; Petryshen, T; Richards, A; Mantripragada, K; Owen, M; O'Donovan, M C; Gill, M; Corvin, A; Morris, D W; Donohoe, G.
Affiliation
  • Cosgrove D; The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland, Galway, Ireland.
  • Harold D; Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.
  • Mothersill O; The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland, Galway, Ireland.
  • Anney R; Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.
  • Hill MJ; Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
  • Bray NJ; Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
  • Blokland G; Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
  • Petryshen T; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
  • Richards A; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Mantripragada K; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
  • Owen M; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
  • O'Donovan MC; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Corvin A; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
  • Morris DW; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
  • Donohoe G; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
Transl Psychiatry ; 7(1): e1012, 2017 01 24.
Article in En | MEDLINE | ID: mdl-28117840
ABSTRACT
Variants at microRNA-137 (MIR137), one of the most strongly associated schizophrenia risk loci identified to date, have been associated with poorer cognitive performance. As microRNA-137 is known to regulate the expression of ~1900 other genes, including several that are independently associated with schizophrenia, we tested whether this gene set was also associated with variation in cognitive performance. Our analysis was based on an empirically derived list of genes whose expression was altered by manipulation of MIR137 expression. This list was cross-referenced with genome-wide schizophrenia association data to construct individual polygenic scores. We then tested, in a sample of 808 patients and 192 controls, whether these risk scores were associated with altered performance on cognitive functions known to be affected in schizophrenia. A subgroup of healthy participants also underwent functional imaging during memory (n=108) and face processing tasks (n=83). Increased polygenic risk within the empirically derived miR-137 regulated gene score was associated with significantly lower performance on intelligence quotient, working memory and episodic memory. These effects were observed most clearly at a polygenic threshold of P=0.05, although significant results were observed at all three thresholds analyzed. This association was found independently for the gene set as a whole, excluding the schizophrenia-associated MIR137 SNP itself. Analysis of the spatial working memory fMRI task further suggested that increased risk score (thresholded at P=10-5) was significantly associated with increased activation of the right inferior occipital gyrus. In conclusion, these data are consistent with emerging evidence that MIR137 associated risk for schizophrenia may relate to its broader downstream genetic effects.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Schizophrenia / Schizophrenic Psychology / Brain / Cognition / MicroRNAs / Memory, Episodic / Facial Recognition / Memory, Short-Term Type of study: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limits: Adult / Female / Humans / Male / Middle aged Language: En Journal: Transl Psychiatry Year: 2017 Document type: Article Affiliation country: Ireland

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Schizophrenia / Schizophrenic Psychology / Brain / Cognition / MicroRNAs / Memory, Episodic / Facial Recognition / Memory, Short-Term Type of study: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limits: Adult / Female / Humans / Male / Middle aged Language: En Journal: Transl Psychiatry Year: 2017 Document type: Article Affiliation country: Ireland