Your browser doesn't support javascript.
loading
Dual Role of Epidermal Growth Factor Receptor in Liver Injury and Regeneration after Acetaminophen Overdose in Mice.
Bhushan, Bharat; Chavan, Hemantkumar; Borude, Prachi; Xie, Yuchao; Du, Kuo; McGill, Mitchell R; Lebofsky, Margitta; Jaeschke, Hartmut; Krishnamurthy, Partha; Apte, Udayan.
Affiliation
  • Bhushan B; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160.
  • Chavan H; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160.
  • Borude P; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160.
  • Xie Y; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160.
  • Du K; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160.
  • McGill MR; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160.
  • Lebofsky M; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160.
  • Jaeschke H; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160.
  • Krishnamurthy P; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160.
  • Apte U; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 uapte@kumc.edu.
Toxicol Sci ; 155(2): 363-378, 2017 02.
Article in En | MEDLINE | ID: mdl-28123000
ABSTRACT
Epidermal growth factor receptor (EGFR) plays a crucial role in hepatocyte proliferation. Its role in acetaminophen (APAP)-mediated hepatotoxicity and subsequent liver regeneration is completely unknown. Role of EGFR after APAP-overdose in mice was studied using pharmacological inhibition strategy. Rapid, sustained and dose-dependent activation of EGFR was noted after APAP-treatment in mice, which was triggered by glutathione depletion. EGFR-activation was also observed in primary human hepatocytes after APAP-treatment, preceding elevation of toxicity markers. Treatment of mice with an EGFR-inhibitor (EGFRi), Canertinib, 1h post-APAP resulted in robust inhibition of EGFR-activation and a striking reduction in APAP-induced liver injury. Metabolic activation of APAP, formation of APAP-protein adducts, APAP-mediated JNK-activation and its mitochondrial translocation were not altered by EGFRi. Interestingly, EGFR rapidly translocated to mitochondria after APAP-treatment. EGFRi-treatment abolished mitochondrial EGFR activity, prevented APAP-mediated mitochondrial dysfunction/oxidative-stress and release of endonucleases from mitochondria, which are responsible for DNA-damage/necrosis. Treatment with N-acetylcysteine (NAC), 4h post-APAP in mice did not show any protection but treatment of EGFRi in combination with NAC showed decrease in liver injury. Finally, delayed treatment with EGFRi, 12-h post-APAP, did not alter peak injury but caused impairment of liver regeneration resulting in sustained injury and decreased survival after APAP overdose in mice. Impairment of regeneration was due to inhibition of cyclinD1 induction and cell cycle arrest. Our study has revealed a new dual role of EGFR both in initiation of APAP-injury and in stimulation of subsequent compensatory regeneration after APAP-overdose.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Analgesics, Non-Narcotic / Hepatocytes / Chemical and Drug Induced Liver Injury / Drug Overdose / ErbB Receptors / Liver Regeneration / Acetaminophen Limits: Animals Language: En Journal: Toxicol Sci Journal subject: TOXICOLOGIA Year: 2017 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Analgesics, Non-Narcotic / Hepatocytes / Chemical and Drug Induced Liver Injury / Drug Overdose / ErbB Receptors / Liver Regeneration / Acetaminophen Limits: Animals Language: En Journal: Toxicol Sci Journal subject: TOXICOLOGIA Year: 2017 Document type: Article