Your browser doesn't support javascript.
loading
Improved shear wave motion detection using coded excitation for transient elastography.
He, Xiao-Nian; Diao, Xian-Fen; Lin, Hao-Ming; Zhang, Xin-Yu; Shen, Yuan-Yuan; Chen, Si-Ping; Qin, Zheng-Di; Chen, Xin.
Affiliation
  • He XN; School of Biomedical Engineering, Shenzhen University, Shenzhen, China.
  • Diao XF; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.
  • Lin HM; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.
  • Zhang XY; School of Biomedical Engineering, Shenzhen University, Shenzhen, China.
  • Shen YY; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.
  • Chen SP; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.
  • Qin ZD; School of Biomedical Engineering, Shenzhen University, Shenzhen, China.
  • Chen X; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen, China.
Sci Rep ; 7: 44483, 2017 03 15.
Article in En | MEDLINE | ID: mdl-28295027
ABSTRACT
Transient elastography (TE) is well adapted for use in studying liver elasticity. However, because the shear wave motion signal is extracted from the ultrasound signal, the weak ultrasound signal can significantly deteriorate the shear wave motion tracking process and make it challenging to detect the shear wave motion in a severe noise environment, such as within deep tissues and within obese patients. This paper, therefore, investigated the feasibility of implementing coded excitation in TE for shear wave detection, with the hypothesis that coded ultrasound signals can provide robustness to weak ultrasound signals compared with traditional short pulse. The Barker 7, Barker 13, and short pulse were used for detecting the shear wave in the TE application. Two phantom experiments and one in vitro liver experiment were done to explore the performances of the coded excitation in TE measurement. The results show that both coded pulses outperform the short pulse by providing superior shear wave signal-to-noise ratios (SNR), robust shear wave speed measurement, and higher penetration intensity. In conclusion, this study proved the feasibility of applying coded excitation in shear wave detection for TE application. The proposed method has the potential to facilitate robust shear elasticity measurements of tissue.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Shear Strength / Elasticity / Elasticity Imaging Techniques / Liver Type of study: Diagnostic_studies Limits: Animals / Humans Language: En Journal: Sci Rep Year: 2017 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Shear Strength / Elasticity / Elasticity Imaging Techniques / Liver Type of study: Diagnostic_studies Limits: Animals / Humans Language: En Journal: Sci Rep Year: 2017 Document type: Article Affiliation country: China
...