Your browser doesn't support javascript.
loading
Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content.
Cantabella, Daniel; Piqueras, Abel; Acosta-Motos, José Ramón; Bernal-Vicente, Agustina; Hernández, José A; Díaz-Vivancos, Pedro.
Affiliation
  • Cantabella D; Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain.
  • Piqueras A; Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain.
  • Acosta-Motos JR; Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain.
  • Bernal-Vicente A; Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain.
  • Hernández JA; Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain.
  • Díaz-Vivancos P; Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain. Electronic address: pdv@cebas.csic.es.
Plant Physiol Biochem ; 115: 484-496, 2017 Jun.
Article in En | MEDLINE | ID: mdl-28500994
In order to cope with challenges linked to climate change such as salinity, plants must develop a wide spectrum of physiological and molecular mechanisms to rapidly adapt. Stevia rebaudiana Bertoni plants are a case in point. According to our findings, salt stress has no significant effect on plant growth in these plants, which accumulate sodium (Na+) in their roots, thus avoiding excessive Na+ accumulation in leaves. Furthermore, salt stress (NaCl stress) increases the potassium (K+), calcium (Ca2+), chloride ion (Cl-) and proline concentrations in Stevia leaves, which could contribute to osmotic adjustment. We also found that long-term NaCl stress does not produce changes in chlorophyll concentrations in Stevia leaves, reflecting a mechanism to protect the photosynthesis process. Interestingly, an increase in chlorophyll b (Chlb) content occured in the oldest plants studied. In addition, we found that NaCl induced reactive oxygen species (ROS) accumulation in Stevia leaves and that this accumulation was more evident in the presence of 5 g/L NaCl, the highest concentration used in the study. Nevertheless, Stevia plants are able to induce (16 d) or maintain (25 d) antioxidant enzymes to cope with NaCl-induced oxidative stress. Low salt levels did not affect steviolbioside and rebaudioside A contents. Our results suggest that Stevia plants induce tolerance mechanisms in order to minimize the deleterious effects of salt stress. We can thus conclude that saline waters can be used to grow Stevia plants and for Steviol glycosides (SGs) production.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stevia / Minerals / Antioxidants Language: En Journal: Plant Physiol Biochem Journal subject: BIOQUIMICA / BOTANICA Year: 2017 Document type: Article Affiliation country: Spain Country of publication: France

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stevia / Minerals / Antioxidants Language: En Journal: Plant Physiol Biochem Journal subject: BIOQUIMICA / BOTANICA Year: 2017 Document type: Article Affiliation country: Spain Country of publication: France