Your browser doesn't support javascript.
loading
Multiregional Age-Associated Reduction of Brain Neuronal Reserve Without Association With Neurofibrillary Degeneration or ß-Amyloidosis.
Wegiel, Jerzy; Flory, Michael; Kuchna, Izabela; Nowicki, Krzysztof; Yong Ma, Shuang; Wegiel, Jarek; Badmaev, Eulalia; Silverman, Wayne P; de Leon, Mony; Reisberg, Barry; Wisniewski, Thomas.
Affiliation
  • Wegiel J; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
  • Flory M; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
  • Kuchna I; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
  • Nowicki K; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
  • Yong Ma S; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
  • Wegiel J; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
  • Badmaev E; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
  • Silverman WP; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
  • de Leon M; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
  • Reisberg B; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
  • Wisniewski T; From the Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, New York (JW, IK, KN, SYM, JW, EB); Research Design and Analysis Service, New York State Institute for Basic Research in Developmental Disabili
J Neuropathol Exp Neurol ; 76(6): 439-457, 2017 Jun 01.
Article in En | MEDLINE | ID: mdl-28505333
ABSTRACT
Increase in human life expectancy has resulted in the rapid growth of the elderly population with minimal or no intellectual deterioration. The aim of this stereological study of 10 structures and 5 subdivisions with and without neurofibrillary degeneration in the brains of 28 individuals 25-102-years-old was to establish the pattern of age-associated neurodegeneration and neuronal loss in the brains of nondemented adults and elderly. The study revealed the absence of significant neuronal loss in 7 regions and topographically selective reduction of neuronal reserve over 77 years in 8 brain structures including the entorhinal cortex (EC) (-33.3%), the second layer of the EC (-54%), cornu Ammonis sector 1 (CA1) (-28.5%), amygdala, (-45.8%), thalamus (-40.5%), caudate nucleus (-35%), Purkinje cells (-48.3%), and neurons in the dentate nucleus (40.1%). A similar rate of neuronal loss in adults and elderly, without signs of accelerating neuronal loss in agers or super-agers, appears to indicate age-associated brain remodeling with significant reduction of neuronal reserve in 8 brain regions. Multivariate analysis demonstrates the absence of a significant association between neuronal loss and the severity of neurofibrillary degeneration and ß-amyloidosis, and a similar rate of age-associated neuronal loss in structures with and without neurofibrillary degeneration.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain / Aging / Neurofibrillary Tangles / Amyloidosis / Neurons Type of study: Risk_factors_studies Limits: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Language: En Journal: J Neuropathol Exp Neurol Year: 2017 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain / Aging / Neurofibrillary Tangles / Amyloidosis / Neurons Type of study: Risk_factors_studies Limits: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Language: En Journal: J Neuropathol Exp Neurol Year: 2017 Document type: Article