Your browser doesn't support javascript.
loading
In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces.
Pfeifer, Verena; Jones, Travis E; Velasco Vélez, Juan J; Arrigo, Rosa; Piccinin, Simone; Hävecker, Michael; Knop-Gericke, Axel; Schlögl, Robert.
Affiliation
  • Pfeifer V; Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 , Berlin , Germany . Email: trjones@fhi-berlin.mpg.de.
  • Jones TE; Catalysis for Energy , Group EM-GKAT , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Elektronenspeicherring BESSY II , Albert-Einstein-Str. 15 , 12489 , Berlin , Germany.
  • Velasco Vélez JJ; Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 , Berlin , Germany . Email: trjones@fhi-berlin.mpg.de.
  • Arrigo R; Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 , Berlin , Germany . Email: trjones@fhi-berlin.mpg.de.
  • Piccinin S; Department of Heterogeneous Reactions , Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , 45470 , Mülheim a. d. Ruhr , Germany.
  • Hävecker M; Diamond Light Source Ltd. , Harwell Science & Innovation Campus , Didcot , Oxfordshire OX 11 0DE , UK . Email: rosa.arrigo@diamond.ac.uk.
  • Knop-Gericke A; Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali , c/o SISSA , Via Bonomea 265 , Trieste , 34136 , Italy.
  • Schlögl R; Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 , Berlin , Germany . Email: trjones@fhi-berlin.mpg.de.
Chem Sci ; 8(3): 2143-2149, 2017 Mar 01.
Article in En | MEDLINE | ID: mdl-28507666
ABSTRACT
Water splitting performed in acidic media relies on the exceptional performance of iridium-based materials to catalyze the oxygen evolution reaction (OER). In the present work, we use in situ X-ray photoemission and absorption spectroscopy to resolve the long-standing debate about surface species present in iridium-based catalysts during the OER. We find that the surface of an initially metallic iridium model electrode converts into a mixed-valent, conductive iridium oxide matrix during the OER, which contains OII- and electrophilic OI- species. We observe a positive correlation between the OI- concentration and the evolved oxygen, suggesting that these electrophilic oxygen sites may be involved in catalyzing the OER. We can understand this observation by analogy with photosystem II; their electrophilicity renders the OI- species active in O-O bond formation, i.e. the likely potential- and rate-determining step of the OER. The ability of amorphous iridium oxyhydroxides to easily host such reactive, electrophilic species can explain their superior performance when compared to plain iridium metal or crystalline rutile-type IrO2.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Chem Sci Year: 2017 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Chem Sci Year: 2017 Document type: Article