Your browser doesn't support javascript.
loading
Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations.
Niu, Xianzeng; Wendt, Anna; Li, Zhenhui; Agarwal, Amal; Xue, Lingzhou; Gonzales, Matthew; Brantley, Susan L.
Affiliation
  • Niu X; Earth and Environmental Systems Institute, Penn State University, EES Building, 2217, University Park, PA, 16802, USA. xzniu@psu.edu.
  • Wendt A; Earth and Environmental Systems Institute, Penn State University, EES Building, 2217, University Park, PA, 16802, USA.
  • Li Z; College of Information Sciences and Technology, Penn State University, University Park, PA, 16802, USA.
  • Agarwal A; Department of Statistics, Penn State University, University Park, PA, 16802, USA.
  • Xue L; Department of Statistics, Penn State University, University Park, PA, 16802, USA.
  • Gonzales M; Earth and Environmental Systems Institute, Penn State University, EES Building, 2217, University Park, PA, 16802, USA.
  • Brantley SL; Earth and Environmental Systems Institute, Penn State University, EES Building, 2217, University Park, PA, 16802, USA.
Environ Geochem Health ; 40(2): 865-885, 2018 Apr.
Article in En | MEDLINE | ID: mdl-29027593
ABSTRACT
To understand how extraction of different energy sources impacts water resources requires assessment of how water chemistry has changed in comparison with the background values of pristine streams. With such understanding, we can develop better water quality standards and ecological interpretations. However, determination of pristine background chemistry is difficult in areas with heavy human impact. To learn to do this, we compiled a master dataset of sulfate and barium concentrations ([SO4], [Ba]) in Pennsylvania (PA, USA) streams from publically available sources. These elements were chosen because they can represent contamination related to oil/gas and coal, respectively. We applied changepoint analysis (i.e., likelihood ratio test) to identify pristine streams, which we defined as streams with a low variability in concentrations as measured over years. From these pristine streams, we estimated the baseline concentrations for major bedrock types in PA. Overall, we found that 48,471 data values are available for [SO4] from 1904 to 2014 and 3243 data for [Ba] from 1963 to 2014. Statewide [SO4] baseline was estimated to be 15.8 ± 9.6 mg/L, but values range from 12.4 to 26.7 mg/L for different bedrock types. The statewide [Ba] baseline is 27.7 ± 10.6 µg/L and values range from 25.8 to 38.7 µg/L. Results show that most increases in [SO4] from the baseline occurred in areas with intensive coal mining activities, confirming previous studies. Sulfate inputs from acid rain were also documented. Slight increases in [Ba] since 2007 and higher [Ba] in areas with higher densities of gas wells when compared to other areas could document impacts from shale gas development, the prevalence of basin brines, or decreases in acid rain and its coupled effects on [Ba] related to barite solubility. The largest impacts on PA stream [Ba] and [SO4] are related to releases from coal mining or burning rather than oil and gas development.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sulfates / Barium / Water Pollutants, Chemical / Acid Rain / Coal Mining / Rivers / Natural Gas / Hydraulic Fracking Type of study: Prognostic_studies / Risk_factors_studies Limits: Humans Country/Region as subject: America do norte Language: En Journal: Environ Geochem Health Journal subject: QUIMICA / SAUDE AMBIENTAL Year: 2018 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sulfates / Barium / Water Pollutants, Chemical / Acid Rain / Coal Mining / Rivers / Natural Gas / Hydraulic Fracking Type of study: Prognostic_studies / Risk_factors_studies Limits: Humans Country/Region as subject: America do norte Language: En Journal: Environ Geochem Health Journal subject: QUIMICA / SAUDE AMBIENTAL Year: 2018 Document type: Article Affiliation country: United States