Your browser doesn't support javascript.
loading
Effects of Scan Resolutions and Element Sizes on Bovine Vertebral Mechanical Parameters from Quantitative Computed Tomography-Based Finite Element Analysis.
Zhang, Meng; Gao, Jiazi; Huang, Xu; Gong, He; Zhang, Min; Liu, Bei.
Affiliation
  • Zhang M; Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun 130025, China.
  • Gao J; Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun 130025, China.
  • Huang X; Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China.
  • Gong H; Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun 130025, China.
  • Zhang M; Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun 130025, China.
  • Liu B; Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun 130025, China.
J Healthc Eng ; 2017: 5707568, 2017.
Article in En | MEDLINE | ID: mdl-29065624
Quantitative computed tomography-based finite element analysis (QCT/FEA) has been developed to predict vertebral strength. However, QCT/FEA models may be different with scan resolutions and element sizes. The aim of this study was to explore the effects of scan resolutions and element sizes on QCT/FEA outcomes. Nine bovine vertebral bodies were scanned using the clinical CT scanner and reconstructed from datasets with the two-slice thickness, that is, 0.6 mm (PA resolution) and 1 mm (PB resolution). There were significantly linear correlations between the predicted and measured principal strains (R2 > 0.7, P < 0.0001), and the predicted vertebral strength and stiffness were modestly correlated with the experimental values (R2 > 0.6, P < 0.05). Two different resolutions and six different element sizes were combined in pairs, and finite element (FE) models of bovine vertebral cancellous bones in the 12 cases were obtained. It showed that the mechanical parameters of FE models with the PB resolution were similar to those with the PA resolution. The computational accuracy of FE models with the element sizes of 0.41 × 0.41 × 0.6 mm3 and 0.41 × 0.41 × 1 mm3 was higher by comparing the apparent elastic modulus and yield strength. Therefore, scan resolution and element size should be chosen optimally to improve the accuracy of QCT/FEA.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Thoracic Vertebrae / Image Processing, Computer-Assisted / Tomography, X-Ray Computed / Finite Element Analysis Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Healthc Eng Year: 2017 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Thoracic Vertebrae / Image Processing, Computer-Assisted / Tomography, X-Ray Computed / Finite Element Analysis Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Healthc Eng Year: 2017 Document type: Article Affiliation country: China Country of publication: United kingdom