Your browser doesn't support javascript.
loading
OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice.
Mao, Xiaohui; Zheng, Yanmei; Xiao, Kaizhuan; Wei, Yidong; Zhu, Yongsheng; Cai, Qiuhua; Chen, Liping; Xie, Huaan; Zhang, Jianfu.
Affiliation
  • Mao X; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China, Fujian Engineering Laborato
  • Zheng Y; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou Bran
  • Xiao K; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou Bran
  • Wei Y; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou Bran
  • Zhu Y; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou Bran
  • Cai Q; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou Bran
  • Chen L; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China, Fujian Engineering Laboratory of Crop Molecular Breeding, Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou Bran
  • Xie H; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China, Fujian Engineering Laborato
  • Zhang J; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice in South China, Fujian Engineering Laborato
Biochem Biophys Res Commun ; 495(1): 461-467, 2018 01 01.
Article in En | MEDLINE | ID: mdl-29128357
ABSTRACT
Peroxiredoxins (Prxs) which are thiol-based peroxidases have been implicated in the toxic reduction and intracellular concentration regulation of hydrogen peroxide. In Arabidopsis thaliana At2-CysPrxB (At5g06290) has been demonstrated to be essential in maintaining the water-water cycle for proper H2O2 scavenging. Although the mechanisms of 2-Cys Prxs have been extensively studied in Arabidopsis thaliana, the function of 2-Cys Prxs in rice is unclear. In this study, a rice homologue gene of At2-CysPrxB, OsPRX2 was investigated aiming to characterize the effect of 2-Cys Prxs on the K+-deficiency tolerance in rice. We found that OsPRX2 was localized in the chloroplast. Overexpressed OsPRX2 causes the stomatal closing and K+-deficiency tolerance increasing, while knockout of OsPRX2 lead to serious defects in leaves phenotype and the stomatal opening under the K+-deficiency tolerance. Detection of K+ accumulation, antioxidant activity of transgenic plants under the starvation of potassium, further confirmed that OsPRX2 is a potential target for engineering plants with improved potassium deficiency tolerance.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plant Proteins / Potassium / Oryza / Plant Stomata / Peroxiredoxins Language: En Journal: Biochem Biophys Res Commun Year: 2018 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plant Proteins / Potassium / Oryza / Plant Stomata / Peroxiredoxins Language: En Journal: Biochem Biophys Res Commun Year: 2018 Document type: Article
...