Your browser doesn't support javascript.
loading
Tension-dependent regulation of mammalian Hippo signaling through LIMD1.
Ibar, Consuelo; Kirichenko, Elmira; Keepers, Benjamin; Enners, Edward; Fleisch, Katelyn; Irvine, Kenneth D.
Affiliation
  • Ibar C; Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA.
  • Kirichenko E; Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA.
  • Keepers B; Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA.
  • Enners E; Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA.
  • Fleisch K; Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA.
  • Irvine KD; Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA Irvine@waksman.rutgers.edu.
J Cell Sci ; 131(5)2018 03 02.
Article in En | MEDLINE | ID: mdl-29440237
ABSTRACT
Hippo signaling is regulated by biochemical and biomechanical cues that influence the cytoskeleton, but the mechanisms that mediate this have remained unclear. We show that all three mammalian Ajuba family proteins - AJUBA, LIMD1 and WTIP - exhibit tension-dependent localization to adherens junctions, and that both LATS family proteins, LATS1 and LATS2, exhibit an overlapping tension-dependent junctional localization. This localization of Ajuba and LATS family proteins is also influenced by cell density, and by Rho activation. We establish that junctional localization of LATS kinases requires LIMD1, and that LIMD1 is also specifically required for the regulation of LATS kinases and YAP1 by Rho. Our results identify a biomechanical pathway that contributes to regulation of mammalian Hippo signaling, establish that this occurs through tension-dependent LIMD1-mediated recruitment and inhibition of LATS kinases in junctional complexes, and identify roles for this pathway in both Rho-mediated and density-dependent regulation of Hippo signaling.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carrier Proteins / Mechanotransduction, Cellular / Intracellular Signaling Peptides and Proteins / LIM Domain Proteins Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: J Cell Sci Year: 2018 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carrier Proteins / Mechanotransduction, Cellular / Intracellular Signaling Peptides and Proteins / LIM Domain Proteins Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: J Cell Sci Year: 2018 Document type: Article Affiliation country: United States
...