Your browser doesn't support javascript.
loading
Superhydrophobic Blood-Repellent Surfaces.
Jokinen, Ville; Kankuri, Esko; Hoshian, Sasha; Franssila, Sami; Ras, Robin H A.
Affiliation
  • Jokinen V; Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Tietotie 3, Micronova, 02150, Espoo, Finland.
  • Kankuri E; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, PO Box 63, Biomedicum,, 00014, Helsinki, Finland.
  • Hoshian S; Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Tietotie 3, Micronova, 02150, Espoo, Finland.
  • Franssila S; Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Tietotie 3, Micronova, 02150, Espoo, Finland.
  • Ras RHA; Department of Applied Physics, School of Science, Aalto University, Puumiehenkuja 2, 02150, Espoo, Finland.
Adv Mater ; 30(24): e1705104, 2018 Jun.
Article in En | MEDLINE | ID: mdl-29465772
Superhydrophobic surfaces repel water and, in some cases, other liquids as well. The repellency is caused by topographical features at the nano-/microscale and low surface energy. Blood is a challenging liquid to repel due to its high propensity for activation of intrinsic hemostatic mechanisms, induction of coagulation, and platelet activation upon contact with foreign surfaces. Imbalanced activation of coagulation drives thrombogenesis or formation of blood clots that can occlude the blood flow either on-site or further downstream as emboli, exposing tissues to ischemia and infarction. Blood-repellent superhydrophobic surfaces aim toward reducing the thrombogenicity of surfaces of blood-contacting devices and implants. Several mechanisms that lead to blood repellency are proposed, focusing mainly on platelet antiadhesion. Structured surfaces can: (i) reduce the effective area exposed to platelets, (ii) reduce the adhesion area available to individual platelets, (iii) cause hydrodynamic effects that reduce platelet adhesion, and (iv) reduce or alter protein adsorption in a way that is not conducive to thrombus formation. These mechanisms benefit from the superhydrophobic Cassie state, in which a thin layer of air is trapped between the solid surface and the liquid. The connections between water- and blood repellency are discussed and several recent examples of blood-repellent superhydrophobic surfaces are highlighted.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hydrophobic and Hydrophilic Interactions Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2018 Document type: Article Affiliation country: Finland Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hydrophobic and Hydrophilic Interactions Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2018 Document type: Article Affiliation country: Finland Country of publication: Germany