Your browser doesn't support javascript.
loading
Investigation of Protein Recruitment to DNA Lesions Using 405 Nm Laser Micro-irradiation.
Gaudreau-Lapierre, Antoine; Garneau, Daniel; Djerir, Billel; Coulombe, Frédéric; Morin, Théo; Marechal, Alexandre.
Affiliation
  • Gaudreau-Lapierre A; Department of Biology, Université de Sherbrooke.
  • Garneau D; Department of Biology, Université de Sherbrooke.
  • Djerir B; Department of Biology, Université de Sherbrooke.
  • Coulombe F; Department of Biology, Université de Sherbrooke.
  • Morin T; Department of Biology, Université de Sherbrooke.
  • Marechal A; Department of Biology, Université de Sherbrooke; alexandre.marechal@usherbrooke.ca.
J Vis Exp ; (133)2018 03 20.
Article in En | MEDLINE | ID: mdl-29630045
The DNA Damage Response (DDR) uses a plethora of proteins to detect, signal, and repair DNA lesions. Delineating this response is critical to understand genome maintenance mechanisms. Since recruitment and exchange of proteins at lesions are highly dynamic, their study requires the ability to generate DNA damage in a rapid and spatially-delimited manner. Here, we describe procedures to locally induce DNA damage in human cells using a commonly available laser-scanning confocal microscope equipped with a 405 nm laser line. Accumulation of genome maintenance factors at laser stripes can be assessed by immunofluorescence (IF) or in real-time using proteins tagged with fluorescent reporters. Using phosphorylated histone H2A.X (γ-H2A.X) and Replication Protein A (RPA) as markers, the method provides sufficient resolution to discriminate locally-recruited factors from those that spread on adjacent chromatin. We further provide ImageJ-based scripts to efficiently monitor the kinetics of protein relocalization at DNA damage sites. These refinements greatly simplify the study of the DDR dynamics.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: DNA Damage / DNA / Fluorescent Antibody Technique / Microscopy, Confocal / Low-Level Light Therapy Limits: Humans Language: En Journal: J Vis Exp Year: 2018 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: DNA Damage / DNA / Fluorescent Antibody Technique / Microscopy, Confocal / Low-Level Light Therapy Limits: Humans Language: En Journal: J Vis Exp Year: 2018 Document type: Article Country of publication: United States