Na+/Ca2+ Exchanger a Druggable Target to Promote ß-Cell Proliferation and Function.
J Endocr Soc
; 2(7): 631-645, 2018 Jul 01.
Article
in En
| MEDLINE
| ID: mdl-29942927
An important feature of type 2 diabetes is a decrease in ß-cell mass. Therefore, it is essential to find new approaches to stimulate ß-cell proliferation. We have previously shown that heterozygous inactivation of the Na+/Ca2+ exchanger (isoform 1; NCX1), a protein responsible for Ca2+ extrusion from cells, increases ß-cell proliferation, mass, and function in mice. Here, we show that Ncx1 inactivation also increases ß-cell proliferation in 2-year-old mice and that NCX1 inhibition in adult mice by four small molecules of the benzoxyphenyl family stimulates ß-cell proliferation both in vitro and in vivo. NCX1 inhibition by small interfering RNA or small molecules activates the calcineurin/nuclear factor of activated T cells (NFAT) pathway and inhibits apoptosis induced by the immunosuppressors cyclosporine A (CsA) and tacrolimus in insulin-producing cell. Moreover, NCX1 inhibition increases the expression of ß-cell-specific genes, such as Ins1, Ins2, and Pdx1, and inactivates/downregulates the tumor suppressors retinoblastoma protein (pRb) and miR-193a and the cell cycle inhibitor p53. Our data show that Na+/Ca2+ exchange is a druggable target to stimulate ß-cell function and proliferation. Specific ß-cell inhibition of Na+/Ca2+ exchange by phenoxybenzamyl derivatives may represent an innovative approach to promote ß-cell regeneration in diabetes and improve the efficiency of pancreatic islet transplantation for the treatment of the disease.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
J Endocr Soc
Year:
2018
Document type:
Article
Affiliation country:
Belgium
Country of publication:
United States