Your browser doesn't support javascript.
loading
Elucidating Gene-by-Environment Interactions Associated with Differential Susceptibility to Chemical Exposure.
Balik-Meisner, Michele; Truong, Lisa; Scholl, Elizabeth H; La Du, Jane K; Tanguay, Robert L; Reif, David M.
Affiliation
  • Balik-Meisner M; Bioinformatics Research Center, Center for Human Health and the Environment, Dept. of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.
  • Truong L; Sinnhuber Aquatic Research Laboratory, Dept. of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA.
  • Scholl EH; Bioinformatics Research Center, Center for Human Health and the Environment, Dept. of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.
  • La Du JK; Sinnhuber Aquatic Research Laboratory, Dept. of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA.
  • Tanguay RL; Sinnhuber Aquatic Research Laboratory, Dept. of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA.
  • Reif DM; Bioinformatics Research Center, Center for Human Health and the Environment, Dept. of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.
Environ Health Perspect ; 126(6): 067010, 2018 06.
Article in En | MEDLINE | ID: mdl-29968567
ABSTRACT

BACKGROUND:

Modern societies are exposed to vast numbers of potentially hazardous chemicals. Despite demonstrated linkages between chemical exposure and severe health effects, there are limited, often conflicting, data on how adverse health effects of exposure differ across individuals.

OBJECTIVES:

We tested the hypothesis that population variability in response to certain chemicals could elucidate a role for gene-environment interactions (GxE) in differential susceptibility.

METHODS:

High-throughput screening (HTS) data on thousands of chemicals in genetically heterogeneous zebrafish were leveraged to identify a candidate chemical (Abamectin) with response patterns indicative of population susceptibility differences. We tested the prediction by generating genome-wide sequence data for 276 individual zebrafish displaying susceptible (Affected) vs. resistant (Unaffected) phenotypes following identical chemical exposure.

RESULTS:

We found GxE associated with differential susceptibility in the sox7 promoter region and then confirmed gene expression differences between phenotypic response classes.

CONCLUSIONS:

The results for Abamectin in zebrafish demonstrate that GxE associated with naturally occurring, population genetic variation play a significant role in mediating individual response to chemical exposure. https//doi.org/10.1289/EHP2662.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genetic Variation / Ivermectin / Zebrafish / Gene-Environment Interaction Type of study: Risk_factors_studies Limits: Animals Language: En Journal: Environ Health Perspect Year: 2018 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genetic Variation / Ivermectin / Zebrafish / Gene-Environment Interaction Type of study: Risk_factors_studies Limits: Animals Language: En Journal: Environ Health Perspect Year: 2018 Document type: Article Affiliation country: United States