Your browser doesn't support javascript.
loading
Removal of anti-inflammatory/analgesic pharmaceuticals from urban wastewater in a pilot-scale A2O system: Linking performance and microbial population dynamics to operating variables.
Gallardo-Altamirano, M J; Maza-Márquez, P; Peña-Herrera, J M; Rodelas, B; Osorio, F; Pozo, C.
Affiliation
  • Gallardo-Altamirano MJ; Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Civil Engineering, University of Granada, 18071 Granada, Spain.
  • Maza-Márquez P; Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain.
  • Peña-Herrera JM; Water and Soil Quality Research Group, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
  • Rodelas B; Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain.
  • Osorio F; Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Civil Engineering, University of Granada, 18071 Granada, Spain.
  • Pozo C; Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain. Electronic address: clpozo@ugr.es.
Sci Total Environ ; 643: 1481-1492, 2018 Dec 01.
Article in En | MEDLINE | ID: mdl-30189564
In this study, the removal rates of eight anti-inflammatory and/or analgesic pharmaceuticals, AIAPs (acetaminophen, ibuprofen, naproxen, ketoprofen, diclofenac, codeine, indomethacin and propyphenazone) were assessed in a pilot-scale A2O system (including anaerobic/anoxic/aerobic zones), long term operated during two experimental phases using different sets of environmental conditions and operating parameters. qPCR was used to quantify the absolute abundances of total Bacteria, total Archaea, mycolic-acid containing filamentous Actinobacteria (Mycolata) and Fungi within the activated sludge microbial community developed in the system. Multivariate analyses and Spearman correlation coefficients were used in search of significant links among the removal rates of the AIAPs, the abundances of the targeted microbial groups in the activated sludge, and the changes of environmental/operating variables in the A2O system. Improved removal efficiencies of several of the AIAPs analyzed (acetaminophen, ibuprofen, naproxen, ketoprofen) were correlated to higher organic load in the influent water, higher concentration of mixed liquor suspended solids (MLSS), lower temperature and lower food-to-microorganisms ratio (F/M). Removal efficiencies of several pharmaceuticals correlated with increased abundances of Mycolata in the A2O system, pointing at this group of bacteria as candidate key players for AIAPs removal in activated sludge.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Waste Disposal, Fluid / Anti-Inflammatory Agents, Non-Steroidal Language: En Journal: Sci Total Environ Year: 2018 Document type: Article Affiliation country: Spain Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Waste Disposal, Fluid / Anti-Inflammatory Agents, Non-Steroidal Language: En Journal: Sci Total Environ Year: 2018 Document type: Article Affiliation country: Spain Country of publication: Netherlands