Your browser doesn't support javascript.
loading
Efficient Trilayer Phosphorescent Organic Light-Emitting Devices Without Electrode Modification Layer and Its Working Mechanism.
Peng, Xiaomei; Feng, Haiwei; Zhang, Jiaxin; Liu, Shihao; Zhang, Letian; Xie, Wenfa.
Affiliation
  • Peng X; State key Laboratory on Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
  • Feng H; State key Laboratory on Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
  • Zhang J; State key Laboratory on Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
  • Liu S; State key Laboratory on Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
  • Zhang L; State key Laboratory on Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China. zlt@jlu.edu.cn.
  • Xie W; State key Laboratory on Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China. xiewf@jlu.edu.cn.
Nanoscale Res Lett ; 13(1): 310, 2018 Oct 04.
Article in En | MEDLINE | ID: mdl-30288619
At present, numerous functional layers are introduced to improve the carrier injection and balance the carrier transport in organic light-emitting devices (OLEDs). Although it may be a good way to enhance the efficiency of devices, the introduction of functional layers would also result in extra process and long manufacture period. Actually, with the enrichment of material system, many appropriate materials could be chosen to share two or even more functions in OLEDs. Here, via impedance spectroscopy and transient electroluminescence analysis, di-[4-(N,N-ditolyl-amino)-phenyl] cyclohexane (TAPC) and 4,7-diphenyl-1,10-phenanthroline (Bphen) are demonstrated to serve as carrier injection and transport layers simultaneously. As a result, efficient trilayer OLEDs are achieved with comparable performances to conventional multilayer devices. Further studies have also been carried out to analyze the recombination and quenching mechanisms in devices. TAPC can block electrons effectively, while Bphen avoids the accumulation of holes. It makes carriers in emitting layer become more balanced, resulting in the reduction of efficiency roll-off.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanoscale Res Lett Year: 2018 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanoscale Res Lett Year: 2018 Document type: Article Country of publication: United States