Your browser doesn't support javascript.
loading
Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory.
Rich, Walter A; Schubert, Nadine; Schläpfer, Nina; Carvalho, Vanessa F; Horta, Antonio C L; Horta, Paulo A.
Affiliation
  • Rich WA; Programa de Pós-Graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil; Phycology Laboratory (LaFic), Universidade Federal de Santa Catarina, Florianópolis, Brazil. Electronic address: richx082@umn.edu.
  • Schubert N; Phycology Laboratory (LaFic), Universidade Federal de Santa Catarina, Florianópolis, Brazil; Programa de Pós-Graduação em Oceanografia, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
  • Schläpfer N; Phycology Laboratory (LaFic), Universidade Federal de Santa Catarina, Florianópolis, Brazil.
  • Carvalho VF; Programa de Pós-Graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil; Phycology Laboratory (LaFic), Universidade Federal de Santa Catarina, Florianópolis, Brazil.
  • Horta ACL; Phycology Laboratory (LaFic), Universidade Federal de Santa Catarina, Florianópolis, Brazil.
  • Horta PA; Phycology Laboratory (LaFic), Universidade Federal de Santa Catarina, Florianópolis, Brazil; Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
Mar Environ Res ; 142: 100-107, 2018 Nov.
Article in En | MEDLINE | ID: mdl-30293660
ABSTRACT
Direct responses to rising temperatures and ocean acidification are increasingly well known for many single species, yet recent reviews have highlighted the need for climate change research to consider a broader range of species, how stressors may interact, and how stressors may affect species interactions. The latter point is important in the context of plant-herbivore interactions, as increasing evidence shows that increasing seawater temperature and/or acidification can alter algal traits that dictate their susceptibility to herbivores, and subsequently, community and ecosystem properties. To better understand how marine rocky shore environments will be affected by a changing ocean, in the present study we investigated the direct effects of short-term, co-occurring increased temperature and ocean acidification on a coralline alga (Jania rubens) and a sea urchin herbivore (Echinometra lucunter) and assessed the indirect effects of these factors on the algal-herbivore interaction. A 21-day mesocosm experiment was conducted with both algae and sea urchins exposed to ambient (24 °C, Low CO2), high-temperature (28 °C, Low CO2), acidified (24 °C, High CO2), or high-temperature plus acidified (28 °C, High CO2) conditions. Algal photosynthesis, respiration, and phenolic content were unaffected by increased temperature and CO2, but calcium carbonate content was reduced under high CO2 treatments in both temperatures, while total sugar content of the algae was reduced under acidified, lower temperature conditions. Metabolic rates of the sea urchin were elevated in the lower temperature, high CO2 treatment, and feeding assays showed that consumption rates also increased in this treatment. Despite some changes to algal chemical composition, it appears that at least under short-term exposure to climate change conditions, direct effects on herbivore metabolism dictated herbivory rates, while indirect effects caused by changes in algal palatability seemed to be of minor importance.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sea Urchins / Climate Change / Rhodophyta / Herbivory Limits: Animals Language: En Journal: Mar Environ Res Journal subject: BIOLOGIA / SAUDE AMBIENTAL / TOXICOLOGIA Year: 2018 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sea Urchins / Climate Change / Rhodophyta / Herbivory Limits: Animals Language: En Journal: Mar Environ Res Journal subject: BIOLOGIA / SAUDE AMBIENTAL / TOXICOLOGIA Year: 2018 Document type: Article