Your browser doesn't support javascript.
loading
Probing the oxidation state of transition metal complexes: a case study on how charge and spin densities determine Mn L-edge X-ray absorption energies.
Kubin, Markus; Guo, Meiyuan; Kroll, Thomas; Löchel, Heike; Källman, Erik; Baker, Michael L; Mitzner, Rolf; Gul, Sheraz; Kern, Jan; Föhlisch, Alexander; Erko, Alexei; Bergmann, Uwe; Yachandra, Vittal; Yano, Junko; Lundberg, Marcus; Wernet, Philippe.
Affiliation
  • Kubin M; Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany . Email: wernet@helmholtz-berlin.de.
  • Guo M; Department of Chemistry-Ångström Laboratory , Uppsala University , Sweden . Email: marcus.lundberg@kemi.uu.se.
  • Kroll T; SSRL , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA.
  • Löchel H; Institute for Nanometre Optics and Technology , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany.
  • Källman E; Department of Chemistry-Ångström Laboratory , Uppsala University , Sweden . Email: marcus.lundberg@kemi.uu.se.
  • Baker ML; The School of Chemistry , The University of Manchester at Harwell , Didcot , OX11 OFA , UK.
  • Mitzner R; Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany . Email: wernet@helmholtz-berlin.de.
  • Gul S; Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA.
  • Kern J; Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA.
  • Föhlisch A; LCLS , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA.
  • Erko A; Institute for Methods and Instrumentation for Synchrotron Radiation Research , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany . Email: wernet@helmholtz-berlin.de.
  • Bergmann U; Institut für Physik und Astronomie , Universität Potsdam , Karl-Liebknecht-Strasse 24/25 , 14476 Potsdam , Germany.
  • Yachandra V; Institute for Nanometre Optics and Technology , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Albert-Einstein-Strasse 15 , 12489 Berlin , Germany.
  • Yano J; Stanford PULSE Institute , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , USA.
  • Lundberg M; Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA.
  • Wernet P; Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA.
Chem Sci ; 9(33): 6813-6829, 2018 Sep 07.
Article in En | MEDLINE | ID: mdl-30310614
ABSTRACT
Transition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes MnII(acac)2 and MnIII(acac)3 as representative model systems and use ab initio theory to uncouple effects of oxidation-state changes from geometric effects. The shift reflects an increased electron affinity of MnIII in the core-excited states compared to the ground state due to a contraction of the Mn 3d shell upon core-excitation with accompanied changes in the classical Coulomb interactions. This new picture quantifies how the metal-centered core hole probes changes in formal oxidation state and encloses and substantiates earlier explanations. The approach is broadly applicable to mechanistic studies of redox-catalytic reactions in molecular systems where charge and spin localization/delocalization determine reaction pathways.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Chem Sci Year: 2018 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Chem Sci Year: 2018 Document type: Article