Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors.
Nat Commun
; 9(1): 4286, 2018 10 16.
Article
in En
| MEDLINE
| ID: mdl-30327457
A tissue engineered oesophagus could overcome limitations associated with oesophageal substitution. Combining decellularized scaffolds with patient-derived cells shows promise for regeneration of tissue defects. In this proof-of-principle study, a two-stage approach for generation of a bio-artificial oesophageal graft addresses some major challenges in organ engineering, namely: (i) development of multi-strata tubular structures, (ii) appropriate re-population/maturation of constructs before transplantation, (iii) cryopreservation of bio-engineered organs and (iv) in vivo pre-vascularization. The graft comprises decellularized rat oesophagus homogeneously re-populated with mesoangioblasts and fibroblasts for the muscle layer. The oesophageal muscle reaches organised maturation after dynamic culture in a bioreactor and functional integration with neural crest stem cells. Grafts are pre-vascularised in vivo in the omentum prior to mucosa reconstitution with expanded epithelial progenitors. Overall, our optimised two-stage approach produces a fully re-populated, structurally organized and pre-vascularized oesophageal substitute, which could become an alternative to current oesophageal substitutes.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Muscle, Skeletal
/
Tissue Engineering
/
Esophagus
/
Tissue Scaffolds
Limits:
Animals
/
Child
/
Child, preschool
/
Humans
/
Infant
/
Male
/
Newborn
Language:
En
Journal:
Nat Commun
Journal subject:
BIOLOGIA
/
CIENCIA
Year:
2018
Document type:
Article
Country of publication:
United kingdom