Your browser doesn't support javascript.
loading
GABAA Modulation of S100B Secretion in Acute Hippocampal Slices and Astrocyte Cultures.
Vizuete, Adriana Fernanda K; Hansen, Fernanda; Da Ré, Carollina; Leal, Miriara B; Galland, Fabiana; Concli Leite, Marina; Gonçalves, Carlos-Alberto.
Affiliation
  • Vizuete AFK; Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil. adrianavizuete@gmail.com.
  • Hansen F; Department of Nutrition, Health Sciences Center, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, Florianópolis, SC, 88040-900, Brazil.
  • Da Ré C; Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
  • Leal MB; Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
  • Galland F; Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
  • Concli Leite M; Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
  • Gonçalves CA; Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
Neurochem Res ; 44(2): 301-311, 2019 Feb.
Article in En | MEDLINE | ID: mdl-30387069
ABSTRACT
Astrocytes are the major glial cells in brain tissue and are involved, among many functions, ionic and metabolic homeostasis maintenance of synapses. These cells express receptors and transporters for neurotransmitters, including GABA. GABA signaling is reportedly able to affect astroglial response to injury, as evaluated by specific astrocyte markers such as glial fibrillary acid protein and the calcium-binding protein, S100B. Herein, we investigated the modulatory effects of the GABAA receptor on astrocyte S100B secretion in acute hippocampal slices and astrocyte cultures, using the agonist, muscimol, and the antagonists pentylenetetrazol (PTZ) and bicuculline. These effects were analyzed in the presence of tetrodotoxin (TTX), fluorocitrate (FLC), cobalt and barium. PTZ positively modify S100B secretion in hippocampal slices and astrocyte cultures; in contrast, bicuculline inhibited S100B secretion only in hippocampal slices. Muscimol, per se, did not change S100B secretion, but prevented the effects of PTZ and bicuculline. Moreover, PTZ-induced S100B secretion was prevented by TTX, FLC, cobalt and barium indicating a complex GABAA communication between astrocytes and neurons. The effects of two putative agonists of GABAA, ß-hydroxybutyrate and methylglyoxal, on S100B secretion were also evaluated. In view of the neurotrophic role of extracellular S100B under conditions of injury, our data reinforce the idea that GABAA receptors act directly on astrocytes, and indirectly on neurons, to modulate astroglial response.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Astrocytes / S100 Calcium Binding Protein beta Subunit / Hippocampus Limits: Animals Language: En Journal: Neurochem Res Year: 2019 Document type: Article Affiliation country: Brazil

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Astrocytes / S100 Calcium Binding Protein beta Subunit / Hippocampus Limits: Animals Language: En Journal: Neurochem Res Year: 2019 Document type: Article Affiliation country: Brazil