Your browser doesn't support javascript.
loading
Ablation of amyloid precursor protein increases insulin-degrading enzyme levels and activity in brain and peripheral tissues.
Kulas, Joshua A; Franklin, Whitney F; Smith, Nicholas A; Manocha, Gunjan D; Puig, Kendra L; Nagamoto-Combs, Kumi; Hendrix, Rachel D; Taglialatela, Giulio; Barger, Steven W; Combs, Colin K.
Affiliation
  • Kulas JA; Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota.
  • Franklin WF; Department of Neuroscience and Cell Biology, University of Texas Medical Branch , Galveston, Texas.
  • Smith NA; Department of Pathology, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota.
  • Manocha GD; Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota.
  • Puig KL; Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota.
  • Nagamoto-Combs K; Department of Pathology, University of North Dakota School of Medicine and Health Sciences , Grand Forks, North Dakota.
  • Hendrix RD; Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences , Little Rock Arkansas.
  • Taglialatela G; Department of Neurology, University of Texas Medical Branch , Galveston, Texas.
  • Barger SW; Department of Geriatrics, University of Arkansas for Medical Sciences , Little Rock Arkansas.
  • Combs CK; Geriatric Research, Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas.
Am J Physiol Endocrinol Metab ; 316(1): E106-E120, 2019 01 01.
Article in En | MEDLINE | ID: mdl-30422705
ABSTRACT
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein widely studied for its role as the source of ß-amyloid peptide, accumulation of which is causal in at least some cases of Alzheimer's disease (AD). APP is expressed ubiquitously and is involved in diverse biological processes. Growing bodies of evidence indicate connections between AD and somatic metabolic disorders related to type 2 diabetes, and App-/- mice show alterations in glycemic regulation. We find that App-/- mice have higher levels of insulin-degrading enzyme (IDE) mRNA, protein, and activity compared with wild-type controls. This regulation of IDE by APP was widespread across numerous tissues, including liver, skeletal muscle, and brain as well as cell types within neural tissue, including neurons, astrocytes, and microglia. RNA interference-mediated knockdown of APP in the SIM-A9 microglia cell line elevated IDE levels. Fasting levels of blood insulin were lower in App-/- than App+/+ mice, but the former showed a larger increase in response to glucose. These low basal levels may enhance peripheral insulin sensitivity, as App-/- mice failed to develop impairment of glucose tolerance on a high-fat, high-sucrose ("Western") diet. Insulin levels and insulin signaling were also lower in the App-/- brain; synaptosomes prepared from App-/- hippocampus showed diminished insulin receptor phosphorylation compared with App+/+ mice when stimulated ex vivo. These findings represent a new molecular link connecting APP to metabolic homeostasis and demonstrate a novel role for APP as an upstream regulator of IDE in vivo.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain / Insulin Resistance / Amyloid beta-Protein Precursor / Muscle, Skeletal / Insulin / Insulysin / Liver Type of study: Prognostic_studies Limits: Animals Language: En Journal: Am J Physiol Endocrinol Metab Journal subject: ENDOCRINOLOGIA / FISIOLOGIA / METABOLISMO Year: 2019 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain / Insulin Resistance / Amyloid beta-Protein Precursor / Muscle, Skeletal / Insulin / Insulysin / Liver Type of study: Prognostic_studies Limits: Animals Language: En Journal: Am J Physiol Endocrinol Metab Journal subject: ENDOCRINOLOGIA / FISIOLOGIA / METABOLISMO Year: 2019 Document type: Article