Your browser doesn't support javascript.
loading
Understanding Uniform, Fast, and Scalable Buoyancy-Driven Macro-Sized Drop Generations.
Jung, Youngkyun; Do, Taegu; Choi, Ung Su; Choi, Sun.
Affiliation
  • Jung Y; Center for Urban Energy Research , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil , Seongbuk-gu, Seoul 02792 , Republic of Korea.
  • Do T; Division of Energy & Environment Technology , Korea University of Science and Technology (UST) , 217 Gajeong-ro , Yuseong-gu, Daejeon 34113 , Republic of Korea.
  • Choi US; Center for Urban Energy Research , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil , Seongbuk-gu, Seoul 02792 , Republic of Korea.
  • Choi S; Division of Energy & Environment Technology , Korea University of Science and Technology (UST) , 217 Gajeong-ro , Yuseong-gu, Daejeon 34113 , Republic of Korea.
Langmuir ; 35(4): 990-999, 2019 01 29.
Article in En | MEDLINE | ID: mdl-30607963
ABSTRACT
Generating uniform drops with fast production rate and tunable volume in a high-throughput way is important in various academic and industrial disciplines. In this study, we propose a strategy to produce milliscale drop in a size-tunable way and model its formation processes. The size of generated drops is uniform (<1% of the standard deviation) and tunable by controlling the flow rate, the pore diameter in membrane, and the surface hydrophobicity of membranes in the dripping regime. Also, their production rates range from ca. 0.1-2.1 Hz. The drop formation is successfully investigated by our five-force balance model. On hydrophobic membranes, the range of the dripping regime for uniform drops is wider (from ca. 5.7 to 10.4 mm) than that on hydrophilic membranes (from ca. 3.8 to 7.0 mm). Also, in the dripping regime in hydrophilic membranes, the production rates of the drop are faster than those of the hydrophobic membrane.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Langmuir Journal subject: QUIMICA Year: 2019 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Langmuir Journal subject: QUIMICA Year: 2019 Document type: Article